# GATES HYDRAULICS Hose, Couplings & Equipment











EQUIPMENT

HOSE/CPLG. Selection

GLOBALSPIRAL Couplings

PCM/PCS

FERRULES

MEGACRIMP COUPLINGS

POWER CRIMP

LOW PRESSURE

COUPLINGS

COUPLINGS

POLARSEAL

COUPLINGS

C14 Couplings

PCTS

Field Attachable

G1 & G2 COUPLINGS

FIELD

ATTACHABLE C5

COUPLINGS

SURELOK AIR BRAKE

COUPLINGS

QUICK DISCONNECT

COUPLERS

NEW BALL

ACCESSORIES

EQUIPMENT AND PARTS

VALVES

THERMO-PLASTIC

COUPLINGS

# Seven Easy Steps for Selecting the Proper Hose

An effective way to remember hose selection criteria is to remember the word...

# STAMPED

- S = Size
- T = Temperature
- A = Application
- M = Material to be conveyed
- **P** = Pressure
- **E** = Ends or couplings
- **D** = Delivery (volume and velocity)

### 1. Hose Size (Dash Numbers)

The inside diameter of the hose must be adequate to keep pressure loss to a minimum and avoid damage to the hose due to heat generation or excessive turbulence. See hose sizing Nomographic Chart.

To determine the replacement hose size, read the layline printed on the side of the original hose. If the original hose layline is painted over or worn off, the original hose must be cut and the inside diameter measured for size.

**NOTE: Before cutting** an original hose assembly, measure the overall assembly length and fitting orientation. These measurements will be required to build the replacement assembly.

The hydraulics industry has adopted a measuring system called Dash Numbers to indicate hose and coupling size. The number which precedes the hose or coupling description is the dash size (see table). This industry standard number denotes hose I.D. in sixteenths of an inch. (The exception to this is the SAE100R5 hoses C5C, C5D, C5E, C5M as well as, C14 and AC134a, where dash sizes denote hose I.D. equal to equivalent tube O.D.) See chart to the right.

|          |                    | Hose I.D. (I               | nches)                       |             |  |  |  |  |
|----------|--------------------|----------------------------|------------------------------|-------------|--|--|--|--|
|          | All Exce<br>C14 ar | pt C5 Series,<br>1d AC134a | C5 Series, C14 and<br>AC134a |             |  |  |  |  |
| Dash No. | Inches             | Millimeters                | Inches                       | Millimeters |  |  |  |  |
| -2       | 1/8                | 3.2                        |                              |             |  |  |  |  |
| -3       | 3/16               | 4.8                        |                              |             |  |  |  |  |
| -4       | 1/4                | 6.4                        | 3/16                         | 4.8         |  |  |  |  |
| -5       | 5/16               | 7.9                        | 1/4                          | 6.4         |  |  |  |  |
| -6       | 3/8                | 9.5                        | 5/16                         | 7.9         |  |  |  |  |
| -8       | 1/2                | 12.7                       | 13/32                        | 10.3        |  |  |  |  |
| -10      | 5/8                | 15.9                       | 1/2                          | 12.7        |  |  |  |  |
| -12      | 3/4                | 19.0                       | 5/8                          | 15.9        |  |  |  |  |
| -14      | 7/8                | 22.2                       |                              |             |  |  |  |  |
| -16      | 1                  | 25.4                       | 7/8                          | 22.2        |  |  |  |  |
| -20      | 1-1/4              | 31.8                       | 1-1/8                        | 28.6        |  |  |  |  |
| -24      | 1-1/2              | 38.1                       | 1-3/8                        | 34.9        |  |  |  |  |
| -32      | 2                  | 50.8                       | 1-13/16                      | 46.0        |  |  |  |  |
| -36      | 2-1/4              | 57.6                       |                              |             |  |  |  |  |
| -40      | 2-1/2              | 63.5                       | 2-3/8                        | 60.3        |  |  |  |  |
| -48      | 3                  | 76.2                       |                              |             |  |  |  |  |
| -56      | 3-1/2              | 88.9                       |                              |             |  |  |  |  |
| -64      | 4                  | 101.6                      |                              |             |  |  |  |  |
| -72      | 4-1/2              | 115.2                      |                              |             |  |  |  |  |

www.gates.com/hydraulics





Hose O.D. can be a critical factor when hose routing clamps are used or hoses are routed through bulkheads. Check individual hose specification tables for O.D.'s.

### 2. Temperature

When selecting a replacement assembly, two areas of temperature must be considered. These are fluid temperature and ambient temperature. The hose selected must be capable of withstanding the minimum and maximum temperature seen by the system. Care must be taken when routing near hot manifolds and in extreme cases a heat shield may be advisable.

See the Gates Hydraulic Hose Selection Guide; Hose Specification Pages; and/or the Additional Temperature Limits for Gates Hydraulic Hoses Chart for temperature ranges and limits for water, water/oil emulsions and water/glycol solutions.

### 3. Application

Determine where or how the replacement hose or assembly is to be used. Most often only a duplicate of the original hose will have to be made. To fulfill the requirements of the application, additional questions may need to be answered, such as:

- Where Will Hose be Used?
- Fluid and/or Ambient Temperature?
- Hose Construction?
- Equipment Type?
- Fluid Compatibility?
- Thread End Connection Type?
- Working and Surge Pressures?
- Environmental Conditions?
- Permanent or Field Attachable Couplings?
- Suction Application?
- Routing Requirements?
- Thread Type?
- Government and Industry Standards Being Met?
- Unusual Mechanical Loads?
- Minimum Bend Radius?
- Non-Conductive Hose Required?
- Excessive Abrasion?

### 4. Material to be Conveyed

Some applications require specialized oils or chemicals to be conveyed through the system. Hose selection must ensure compatibility of the hose tube, cover,couplings and O-rings with the fluid used. Additional caution must be exercised in hose selection for gaseous applications such as refrigerants and LPG.

NOTE: All block type couplings contain nitrile O-rings which must be compatible with the fluids being used.

### 5. Pressure

Most important in the hose selection process is knowing system pressure, including pressure spikes. Published working pressures must be equal to or greater than the system pressure. Pressure spikes greater than the published working pressure will shorten hose life and must be taken into consideration. Gates DOES NOT recommend using hoses on applications having pressure spikes greater than published working pressures of the hose.

### 6. Ends of Couplings

Identify end connections using Gates coupling templates and measuring tools or Coupling Identification section. Once thread ends have been identified, consult the appropriate section of the catalog for specific part number selection.

### 7. Delivery (Volume and Velocity)

If the same I.D. of the original hose is used, assume the system is properly sized to efficiently transport fluid. If the system is new or altered, determine the hose I.D. needed to transport required fluid volume flow by using the Nomographic Chart.

| EQUIPMENT                                   |
|---------------------------------------------|
| HOSE/CPLG.<br>Selection                     |
| GLOBALSPIRAL<br>Couplings                   |
| PCM/PCS<br>FERRULES                         |
| MEGACRIMP<br>Couplings                      |
| POWER<br>CRIMP<br>COUPLINGS                 |
| LOW<br>PRESSURE<br>COUPLINGS                |
| POLARSEAL<br>Couplings                      |
| C14<br>Couplings                            |
| PCTS<br>THERMO-<br>PLASTIC<br>COUPLINGS     |
| FIELD<br>ATTACHABLE<br>G1 & G2<br>COUPLINGS |
| FIELD<br>ATTACHABLE<br>C5<br>COUPLINGS      |
| SURELOK AIR<br>Brake<br>Couplings           |
| QUICK<br>Disconnect<br>Couplers             |
| NEW BALL<br>VALVES                          |
| ACCESSORIES                                 |
| EQUIPMENT<br>AND PARTS                      |
|                                             |





### EQUIPMENT

HOSE/CPLG. SELECTION

GLOBALSPIRAL COUPLINGS

PCM/PCS FERRULES

MEGACRIMP COUPLINGS

POWER CRIMP COUPLINGS

LOW PRESSURE COUPLINGS

POLARSEAL COUPLINGS

C14 COUPLINGS

PCTS THERMO-PLASTIC

COUPLINGS FIELD ATTACHABLE

G1 & G2 COUPLINGS

FIELD ATTACHABLE C5 COUPLINGS

SURELOK AIR BRAKE

COUPLINGS

OLIICK DISCONNECT

COUPLERS NEW BALL

VALVES

ACCESSORIES

EQUIPMENT AND PARTS

\* Except 1/4" \*\* Except 3/8" & 1/2"

**Agency Specifications and Hose Selection Guide** 

### **INDUSTRY AGENCIES**

- ABS American Bureau of Shipping
- AS Australia Standard
- DIN Deutsch Industry Norm, German
- **DNV** Det Norske Veritas for North Sea Floating Vessels
- EN European Norm/Standard
- **GL** Germanischer Lloyds
- IJS Industrial Jack Specifications
- RCCC Regular Commom Carrier Conference for Fleet Truck and Bus
- SAE Society of Automotive Engineers

### **GOVERNMENT AGENCIES**

DOT/FMVSS - U.S. Department of Transportation/ Federal Motor Vehicle Safety Standard MSHA - U.S. Mine Safety and Health Administration USCG - U.S. Coast Guard

### Meets These Agency Specifications

| Hose Type                                                    | ARC | 10 | DIN           | עאס                                                                                                                                                                                                                                                                                                                                                                                                          | EN             | CI | 110 | RCCC     | SVE                      | DOT/ FMVSS             | МСНУ   | USCG     | J1942 |
|--------------------------------------------------------------|-----|----|---------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|----|-----|----------|--------------------------|------------------------|--------|----------|-------|
| nose type                                                    | ADO | AO | DIN           | IN         DNV           4SH/4SP         X         E           3 4SP             3 4SP             3 4SP             3 4SP             3 4SP             3 4SP                             X             X            2 2SN         X            X             X             X             X             X             X             X             X             X             X             X             X | LIN            | UL | 100 | nuuu     | JAL                      | DOT/ FIVINGS           | INIONA | Fuel Oil | Power |
| EFG6K, G6K                                                   | Х   | Х  | 20023 4SH/4SP | Х                                                                                                                                                                                                                                                                                                                                                                                                            | EN 856 4SH/4SP |    |     |          | 100R15                   |                        | Х      |          | Х     |
| EFG5K, G5K                                                   | Х   | Х  | 20023 4SH/4SP | Х                                                                                                                                                                                                                                                                                                                                                                                                            | EN 856 4SH/4SP |    |     |          | 100R13                   |                        | Х      |          | Х     |
| EFG4K, G4K                                                   | Х   | Х  | 20023 4SP     |                                                                                                                                                                                                                                                                                                                                                                                                              | EN 856 4SP     |    |     |          | 100R12                   |                        | Х      |          | Х     |
| EFG3K, G3K                                                   | Х   |    | 20023 4SP     |                                                                                                                                                                                                                                                                                                                                                                                                              | EN 856 4SP     |    |     |          | 100R12                   |                        | Х      |          | Х     |
| M5K                                                          |     | Х  |               |                                                                                                                                                                                                                                                                                                                                                                                                              |                | Х  |     |          |                          |                        |        |          |       |
| M4K+                                                         | Х   | Х  |               |                                                                                                                                                                                                                                                                                                                                                                                                              |                | Х  |     |          | 100R19                   |                        | Х      |          | Х     |
| M4KH                                                         | Х   |    |               |                                                                                                                                                                                                                                                                                                                                                                                                              |                | Х  |     |          | 100R19                   |                        | Х      |          | Х     |
| G2XH                                                         |     |    |               |                                                                                                                                                                                                                                                                                                                                                                                                              |                |    |     |          | 100R2 Type AT            |                        | Х      |          | Х     |
| G2AT-HMP                                                     |     |    |               |                                                                                                                                                                                                                                                                                                                                                                                                              |                |    |     |          | 100R2 Type AT            |                        | Х      |          | Х*    |
| M2T <sup>®</sup>                                             | Х   | Х  |               | Х                                                                                                                                                                                                                                                                                                                                                                                                            | EN 853 2SN     |    |     |          | 100R16                   |                        | Х      |          | Х     |
| M2T <sup>®</sup> Plus                                        |     |    |               |                                                                                                                                                                                                                                                                                                                                                                                                              | EN 853 2SN     |    |     |          | 100R16                   |                        | Х      |          |       |
| CM2T                                                         |     |    |               |                                                                                                                                                                                                                                                                                                                                                                                                              | EN 857 2CS     |    | 1   |          | 100R16                   |                        | Х      |          |       |
| G2                                                           |     | Х  | 20022 2SN     | Х                                                                                                                                                                                                                                                                                                                                                                                                            | EN 853 2SN     | Х  |     |          | 100R2 Type AT            |                        | Х      |          | Х     |
| G2H                                                          |     | Х  |               | Х                                                                                                                                                                                                                                                                                                                                                                                                            | EN 853 2SN     |    |     |          | 100R2 Type AT            |                        | Х      | Х        | Х     |
| J2AT                                                         |     |    |               |                                                                                                                                                                                                                                                                                                                                                                                                              |                |    | Х   |          |                          |                        | Х      |          |       |
| МЗК                                                          | Х   | Х  |               | Х                                                                                                                                                                                                                                                                                                                                                                                                            | EN 857         | Х  | 1   |          | 100R17                   |                        | Х      |          | Х     |
| M3K -12, -16                                                 | Х   | Х  |               | Х                                                                                                                                                                                                                                                                                                                                                                                                            | EN 857         | Х  | 1   |          | 100R17, 100R9            |                        | Х      | Х        | Х     |
| G1                                                           |     | Х  | 20022 1SN     | Х                                                                                                                                                                                                                                                                                                                                                                                                            | EN 853 1SN     | Х  | 1   |          | 100R1 Type AT            |                        | Х      |          | Х     |
| G1H                                                          |     |    |               | Х                                                                                                                                                                                                                                                                                                                                                                                                            | EN 853 1SN     |    | 1   |          | 100R1 Type AT            |                        | Х      | Х        |       |
| MegaTech™                                                    |     |    |               |                                                                                                                                                                                                                                                                                                                                                                                                              |                |    | 1   |          | J1402, J1405             | 106-74 (-4 to -10)     |        |          |       |
| TR500                                                        |     |    |               |                                                                                                                                                                                                                                                                                                                                                                                                              |                |    |     |          | J1402                    | 106-74                 |        |          |       |
| NABT                                                         |     |    |               |                                                                                                                                                                                                                                                                                                                                                                                                              |                |    | 1   |          | J844                     |                        |        |          |       |
| 050                                                          |     |    |               |                                                                                                                                                                                                                                                                                                                                                                                                              |                |    | 1   |          | 10005                    | 106-74 Type All (-4 to |        |          |       |
| 696                                                          |     |    |               |                                                                                                                                                                                                                                                                                                                                                                                                              |                |    |     | RP305(B) | 100K5                    | -10)                   |        |          |       |
| C5E                                                          |     |    |               |                                                                                                                                                                                                                                                                                                                                                                                                              |                |    |     |          | J1405                    | 106-74 Type Al         |        |          |       |
| C5D                                                          |     |    |               |                                                                                                                                                                                                                                                                                                                                                                                                              |                |    | 1   |          | J1405                    | 106-74 Type All        |        |          |       |
| C5M                                                          | Х   |    |               |                                                                                                                                                                                                                                                                                                                                                                                                              |                |    | 1   |          | J30R2, J1527             |                        | Х      | Х        |       |
| G3H                                                          |     |    |               |                                                                                                                                                                                                                                                                                                                                                                                                              | EN 854 R3      |    | 1   |          | 100R3                    |                        |        |          |       |
| GTH, GTHX                                                    |     |    |               |                                                                                                                                                                                                                                                                                                                                                                                                              | EN 854 R6      |    | 1   |          | 100R6                    |                        |        |          |       |
| GMV                                                          | X@  | Х  |               |                                                                                                                                                                                                                                                                                                                                                                                                              |                |    | 1   |          | 100R4                    |                        | Х      |          | Х     |
| LOL                                                          |     |    |               |                                                                                                                                                                                                                                                                                                                                                                                                              |                |    | 1   |          |                          |                        | Х      |          |       |
| THERMOPLASTIC<br>TH7, TH7NC***<br>TH8, TH8NC<br>TH18, TH18NC |     |    |               |                                                                                                                                                                                                                                                                                                                                                                                                              |                |    |     |          | 100R7<br>100R8<br>100R18 |                        |        |          |       |
| C14                                                          |     |    |               |                                                                                                                                                                                                                                                                                                                                                                                                              |                |    |     |          | 100R14                   |                        |        |          |       |
| REFRIGERANT                                                  |     |    |               |                                                                                                                                                                                                                                                                                                                                                                                                              |                |    | -   |          | 100111-                  |                        |        |          |       |
| PolarSeal® AC134a                                            |     |    |               |                                                                                                                                                                                                                                                                                                                                                                                                              |                |    |     |          | J51 Type 2, J2064        |                        |        |          |       |
| POWER STEERING<br>PS188                                      |     |    |               |                                                                                                                                                                                                                                                                                                                                                                                                              |                |    |     |          | 2050                     |                        |        |          |       |

\*\*\* TH7NC meets ANSI A92.2 for vehicle mounted aerial devices (-3 to -8)

@ to be used with a fire sleeve

Gates Corporation



HOSE/CPLG. SELECTION

GLOBALSPIRAL

COUPLINGS

PCM/PCS

FERRULES

MEGACRIMP COUPLINGS

POWER CRIMP COUPLINGS

LOW PRESSURE COUPLINGS

C14 COUPLINGS

PCTS THERMO-PLASTIC COUPLINGS

FIELD ATTACHABLE G1 & G2 COUPLINGS

FIELD ATTACHABLE C5 COUPLINGS

SURELOK AIR BRAKE COUPLINGS

QUICK DISCONNECT

COUPLERS

NEW BALL

ACCESSORIES

EQUIPMENT AND PARTS

VALVES

POLARSEAL COUPLINGS

# **Characteristics of Hose Stock Types**

The characteristics shown below are for the normal or usual range of these specific stocks. Stocks can be changed somewhat through different compounding to meet the requirements of specialized applications. Tube and cover stocks may occasionally be upgraded to take advantage of improved materials and technology.

For detailed information on a specific hose tube or cover stock, check the Chemical Resistance Table and also the specific hose page.

|                                      | Neoprene<br>(Poly-<br>Choroprene)<br>Type A | Nitrile<br>(Acrylonitrile<br>and Butadiene)<br>Type C | Nylon<br>Type Z   | Hypalon*<br>(Chlorosulfonated<br>Polyethylene)<br>Type M | EPDM<br>(Ethylene<br>Propylene<br>Diene)<br>Type P | CPE<br>(Chlorinated<br>Polyethylene)<br>Type J | PTFE (Poly-<br>tetrafluoro-<br>ethylene)<br>Type T |
|--------------------------------------|---------------------------------------------|-------------------------------------------------------|-------------------|----------------------------------------------------------|----------------------------------------------------|------------------------------------------------|----------------------------------------------------|
| Flame Resistance                     | Very Good                                   | Poor                                                  | Good              | Good                                                     | Poor                                               | Good                                           | Good                                               |
| Petroleum Base Oils                  | Good                                        | Excellent                                             | Good to Excellent | Good                                                     | Poor                                               | Very Good                                      | Excellent                                          |
| Diesel Fuel                          | Fair to Good                                | Good to Excellent                                     | Good to Excellent | Good                                                     | Poor                                               | Good                                           | Excellent                                          |
| Resistance to Gas<br>Permeation      | Good                                        | Good                                                  | Good To Excellent | Good to Excellent                                        | Fair to Good                                       | Good                                           | Good to<br>Excellent                               |
| Weather                              | Good to Excellent                           | Poor                                                  | Excellent         | Very Good                                                | Excellent                                          | Good                                           | Excellent                                          |
| Ozone                                | Good to Excellent                           | Poor for Tube;<br>Good For Cover                      | Excellent         | Very Good                                                | Outstanding                                        | Good                                           | Excellent                                          |
| Heat                                 | Good                                        | Good                                                  | Good              | Very Good                                                | Excellent                                          | Excellent                                      | Excellent                                          |
| Low Temperature                      | Fair to Good                                | Poor to Fair                                          | Excellent         | Poor                                                     | Good to<br>Excellent                               | Good                                           | Excellent                                          |
| Water-Oil Emulsions                  | Excellent                                   | Excellent                                             | Good to Excellent | Good                                                     | Poor                                               | Excellent                                      | Excellent                                          |
| Water/Glycol<br>Emulsions            | Excellent                                   | Excellent                                             | Excellent         | Excellent                                                | Excellent                                          | Excellent                                      | Excellent                                          |
| Diesters                             | Poor                                        | Poor                                                  | Excellent         | Fair                                                     | Excellent                                          | Very Good                                      | Excellent                                          |
| Phosphate Esters                     | Fair (For Cover)                            | Poor                                                  | Excellent         | Fair                                                     | Very Good                                          | Very Good                                      | Excellent                                          |
| Phosphate<br>Ester Base<br>Emulsions | Fair (For Cover)                            | Poor                                                  | Excellent         | Fair                                                     | Very Good                                          | Very Good                                      | Excellent                                          |

\*Registered trademark of DuPont.

# **Cover Abrasion Resistance**

These comparisons are based on test results per ISO 6945 abrasion testing. The table shows the expected number of times of extended cover service life as compared to a standard cover.

|                              | Modified Nitrile<br>(Standard cover) | Nylon Sleeve        | XtraTuff™           | MegaTuff <sup>®</sup> |
|------------------------------|--------------------------------------|---------------------|---------------------|-----------------------|
| Relative Abrasion Resistance | 1                                    | 15 X Standard Cover | 25 X Standard Cover | 300 X Standard Cover  |





# **Hose & Coupling Section**

### Gates Hydraulic Hose Selection Guide

| HOSE/CPI G.            |   | Standard Industry Construction                                                           |                        | Stock                                 |                                                                |             |          |                  |                |
|------------------------|---|------------------------------------------------------------------------------------------|------------------------|---------------------------------------|----------------------------------------------------------------|-------------|----------|------------------|----------------|
| SELECTION              |   | Standard Industry                                                                        | Description            | Construction                          | Use                                                            | Tub         | е        | Cover            |                |
| OLLEONON               |   | Specification                                                                            |                        | (Reinforcement)                       |                                                                | Name        | Type     | Name             | Type           |
|                        |   | SAE 100R15<br>EN 856 TYPE 4SP/4SH                                                        | EFG6K                  | 4&6-spiral, wire                      | Extremely High Pressure, Petrol, Oils,<br>Environmental Fluids | Nitrile     | С        | Neoprene         | A              |
| COUPLINGS              |   | SAE 100R13<br>EN 856 TYPE 4SP/4SH                                                        | EFG5K                  | 4&6-spiral, wire                      | Extremely High Pressure, Petrol, Oils,<br>Environmental Fluids | Nitrile     | С        | Neoprene         | A              |
|                        |   | SAE 100R12<br>EN 856 TYPE 4SP                                                            | EFG4K                  | 4&6-spiral, wire                      | Extremely High Pressure, Petrol, Oils,<br>Environmental Fluids | Nitrile     | С        | Neoprene         | A              |
| PCM/PCS<br>FERRULES    |   | SAE 100R12<br>EN 856 TYPE 4SP                                                            | EFG3K                  | 4-spiral, wire                        | Extremely High Pressure Petrol, Oils                           | Nitrile     | С        | Neoprene         | A              |
|                        |   | SAE 100R15<br>EN 856 TYPE 4SP/4SH                                                        | G6K                    | 4&6-spiral, wire                      | Extremely High Pressure                                        | Neoprene    | А        | Neoprene         | А              |
| MEGACRIMP<br>COUPLINGS |   | SAE 100R13<br>EN 856 TYPE R13/4SP/4SH                                                    | G5K                    | 4&6-spiral, wire                      | Extremely High Pressure Petrol, Oils                           | Neoprene    | А        | Neoprene         | А              |
|                        |   | SAE 100R12<br>EN 856 TYPE 4SP                                                            | GЗК                    | 4-spiral, wire                        | Extremely High Pressure Petrol, Oils                           | Neoprene    | Α        | Neoprene         | А              |
| POWER                  |   | SAE 100R12<br>EN 856 TYPE R12                                                            | C12                    | 4-spiral, wire                        | High Pressure, Petrol, Oils                                    | Neoprene    | Α        | Neoprene         | A              |
| CRIMP<br>COUPLINGS     |   | SAE 100R2 Type AT<br>EN 853 Type 2SN                                                     | G2                     | 2-braid, wire                         | Petroleum Oils                                                 | Nitrile     | С        | NBR/PVC          | C2             |
|                        |   | SAE 100R2 Type AT                                                                        | MegaTech™ II           | 2-braid, wire                         | Petroleum Oils                                                 | CPE         | J        | Blue Textile     |                |
|                        |   | SAE 100R2 Type AT                                                                        | G2L                    | 2-braid, wire                         | Petroleum Oils, Low Temperatures                               | Nitrile     | С        | Neoprene         | Α              |
| LOW                    |   | SAF 100B16                                                                               | M2T®                   | 2-braid, wire                         | Tight Bends, High Elexibility                                  | Nitrile     | С        | NBB/PVC          | C2             |
| PRESSURE               |   | Gates Proprietary                                                                        | M6K                    | 2-braid, wire                         | Tight Bends, High Flexibility                                  | Nitrile     | C        | NBR/PVC          | C2             |
| COUPLINGS              |   | Gates Proprietary                                                                        | M5K                    | 2-braid, wire                         | Tight Bends, High Flexibility                                  | Nitrile     | С        | NBR/PVC          | C2             |
|                        |   | SAE 100R19                                                                               | M4K+                   | 2-braid, wire                         | Tight Bends, High Flexibility                                  | Nitrile     | С        | NBR/PVC          | C2             |
|                        |   | SAE 100R17                                                                               | МЗК                    | 1 & 2-braid, wire                     | Tight Bends, High Flexibility                                  | Nitrile     | С        | NBR/PVC          | C <sub>2</sub> |
| COUPLINGS              |   | SAE 100R17<br>EN 857 1SC                                                                 | МЗКН                   | 1-braid, wire                         | High Pressure Oil                                              | Nitrile     | С        | NBR/PVC          | C2             |
|                        |   | SAE 100R2 Type AT<br>EN 853 TYPE 2SN                                                     | G2H                    | 2-braid, wire                         | High Temperature                                               | Nitrile     | С        | Hypalon+         | М              |
| C14                    |   | SAE 100R2 Type AT                                                                        | G2XH                   | 2-braid, wire                         | Multi-Fluid, High Temperature                                  | CPE         | J        | CPE              | J              |
| COUPLINGS              |   | SAE 100R2 Type AT                                                                        | G2AT-HMP               | 2-braid, wire                         | Multi-Fluid, High Temperature                                  | CPE         | J        | Neoprene         | A              |
|                        |   |                                                                                          | JZAI                   | 2-braid, wire                         | Industrial Jack Hose                                           | INITE       | <u> </u> | NBR/PVC          | 62             |
| PCTS                   |   | EN 853 Type 1SN                                                                          | G1                     | 1-braid, wire                         | Petroleum Oils                                                 | Nitrile     | С        | NBR/PVC          | C2             |
| THERMO-<br>Plastic     | , | EN 853 TYPE 1SN                                                                          | G1H                    | 1-braid, wire                         | High Temperature                                               | Nitrile     | С        | Hypalon+         | M              |
| COUPLINGS              |   | EN 854 TYPE R3                                                                           | G3H                    | 2-braid, textile                      | Petrol. Oils, Antifreeze, Water, High Temperature              | Nitrile     | C        | Neoprene         | A              |
|                        |   | EN 854 TYPE R6                                                                           | GTH                    | 1-braid, textile                      | Petrol. Oils, Antifreeze, Water, High Temperature              | Nitrile     | С        | Neoprene         | A              |
| FIELD                  |   | SAE 100R4                                                                                | G4H                    | 2-spiral, textile, helical wire       | Return & Suction High Temperature                              | Nitrile     | С        | Neoprene         | A              |
| ATTACHABLE             |   | SAE 100R4                                                                                | GMV                    | 2-spiral, textile, helical wire       | Return & Suction High Temperature                              | Nitrile     | С        | Neoprene         | A              |
| G1 & G2                |   | SAE 30R2 Type 1 & 2                                                                      | RLA                    | 1-braid, textile                      | Return & Low Pressure                                          | Nitrile     | C        | NBR/PVC          | C2             |
| COUPLINGS              | , |                                                                                          | RLC                    | 3-braid, textile                      | Return & Low Pressure                                          | Nitrile     |          | NBR/PVC          | <u>C2</u>      |
|                        |   |                                                                                          | LOC                    | 1-braid textile                       | Petrol Oils Antifreeze Water & Air                             | Nitrile     | C        | ***              | A/C2           |
|                        |   | SAE J1402, J1019                                                                         | MegaTech <sup>TM</sup> | 2-braid, wire, textile                | Hot Oil, Air Return Line                                       | CPE         | J        | Textile          |                |
| FIELD                  |   | SAE J1019                                                                                | MegaTech™ 250          | 2-braid, wire, textile                | Transmission Oil Cooler, Hot Oil, Air Return Line              | CPE         | J        | Textile          |                |
| ATTACHABLE             |   | SAE J1402, DOT FMVSS106-74                                                               | TR500                  | 2-braid, wire, textile                | Petrol & Syn. Fluids, Air Brakes                               | Nitrile     | С        | Textile          |                |
| C5<br>COUPLINGS        |   | SAE 100R5, DOT FMVSS106-74,<br>Type All                                                  | *C5C                   | 3-braid, T-W-T                        | Petr. Oil, Air Brake, Power Steering                           | *Nitrile    | С        | Textile          | -              |
|                        |   | SAE J1402, DOT FMVSS106-74, Type<br>All                                                  | C5D                    | 3-braid, T-W-T                        | Petrol & Syn. Fluids, Air Brakes                               | CPE         | J        | Textile          | _              |
| SURELOK AIR            |   | SAE J1527, SAE J1942, ISO 7840                                                           | C5M                    | 1-braid, wire                         | Marine Fuel & Oil                                              | Nitrile     | C        | NBR/PVC          | C2             |
| BRAKE                  |   | DOTFMVSS106-74, Type Al                                                                  | C5E                    | 3-braid, I-W-I                        | Air Brake, Power Steering, Lube                                | Nitrile     |          | l extile         |                |
| COUPLINGS              |   | PTFE                                                                                     | 014                    |                                       |                                                                | DIFF        |          |                  |                |
|                        |   | SAE 100R14                                                                               | C14CT                  | 1 - braid, stainless steel            | High Temperature, Multi Fluid, Nonconductive                   | PIFE        |          | Stainless Steel  |                |
|                        |   | Thermonicotic                                                                            | 01401                  | 1-Dialu, stairliess steel             | High Temperature, Multi Fluid, Conductive                      | FIFE        |          | Stairliess Steel |                |
| QUICK                  |   | SAE 100B7                                                                                | TH7                    | 1-braid polyester                     | Patrolaum & Synthatic Fluids                                   | Nylon       | 7        | Urethane         |                |
| DISCONNECT             |   | SAE 10007                                                                                | TH7NC/TH7NCDI          | 1-braid, polyester                    | Non-conductive                                                 | Nylon       | 7        | Urethane         |                |
| COUPLERS               |   | SAE 100R7                                                                                | TH7DL                  | 1-braid, polyester                    | Petroleum & Synthetic Fluids. Dual Line                        | Nylon       | Z        | Urethane         | U              |
|                        |   | SAE 100R7                                                                                | TH7NCDL                | 1-braid, polyester                    | Non-conductive, Dual Line                                      | Nylon       | Z        | Urethane         | U              |
|                        |   | SAE 100R8                                                                                | TH8                    | 2-braid, Polyester                    | Petroleum & Synthetic Fluids                                   | Nylon       | Z        | Urethane         | U              |
| NEW BALL               |   | SAE 100R8                                                                                | TH8NC                  | 2-braid, Polyester                    | Non-conductive                                                 | Nylon       | Z        | Urethane         | U              |
| VALVES                 |   | SAE 100R18                                                                               | TH18                   | 1-band, Synthetic Fiber               | Petroleum & Synthetic Fluids                                   | Nylon       | Z        | Urethane         | U              |
|                        |   | SAE 100R18                                                                               | TH18NC                 | 2-band, Synthetic Fiber               | Non-conductive                                                 | Nylon       | Z        | Urethane         | U              |
|                        |   | Refrigerant                                                                              |                        |                                       |                                                                |             |          |                  |                |
| ACCESSORIES            |   | SAE J51 Type All Dimensions/ Type D<br>PerformanceJ2064, Type C, Class II<br>Performance | PolarSeal® AC134a      | Nylon barrier, 2-spiral,<br>Polyester | Air Conditioning (R12 and R134a)                               | Chloroprene | A        | EPDM             | Р              |
| EQUIPMENT              |   | Power Steering, SAE J2050                                                                | PS188                  | 2-braid, Nylon                        | Power Steering Fluids, High Temperature                        | Hypalon+    | М        | Neoprene         | A              |
| AND PARTS              |   | PowerClean™                                                                              | PowerClean™            | 1 & 2-braid, wire,                    | Tight Bends, High Flexibility                                  | Nitrile     | С        | NBR/PVC          | C <sub>2</sub> |

\* -4 and -5 sizes have a Neoprene tube. \*\* Nitrile or Neoprene + Registered trademark of DuPont.





EQUIPMENT

### Gates Hydraulic Hose Selection Guide

|                   | Temp. Dash Size vs. Rated Working Pressure (psi) |       |          |        |       |        |       |       |       |       |       |       |       |     |     |     |     |
|-------------------|--------------------------------------------------|-------|----------|--------|-------|--------|-------|-------|-------|-------|-------|-------|-------|-----|-----|-----|-----|
| Description       | Range<br>(°F)                                    | -2    | -3       | -4     | -5    | -6     | -8    | -10   | -12   | -16   | -20   | -24   | -32   | -40 | -48 | -56 | -64 |
| EFG6K             | -40 +250                                         |       |          |        |       | 6,000  | 6,000 | 6,000 | 6,000 | 6,000 | 6,000 |       |       |     |     |     |     |
| EFG5K             | -40 +250                                         |       |          |        |       | 5,000  | 5,000 | 5,000 | 5,000 | 5,000 | 5,000 |       |       |     |     |     |     |
| EFG4K             | -40 +250                                         |       |          |        |       | 4,000  | 4,000 | 4,000 | 4,000 | 4,000 | 4,000 |       |       |     |     |     |     |
| EFG3K             | -40 +250                                         |       |          |        |       |        |       |       |       |       | 3,000 |       |       |     |     |     |     |
| G6K               | -40 +250                                         |       |          |        |       | 6,000  | 6,000 | 6,000 | 6,000 | 6,000 | 6,000 | 6,000 |       |     |     |     |     |
| G5K               | -40 +250                                         |       |          |        |       |        | 5,000 | 5,000 | 5,000 | 5,000 | 5,000 | 5,000 | 5,000 |     |     |     |     |
| G3K               | -40 +250                                         |       |          |        |       |        |       |       | .,    |       | 3.000 | 3.000 | 3.000 |     |     |     |     |
| C12               | -40 +250                                         |       |          |        |       |        |       |       |       |       | .,    | 2,500 | 2,500 |     |     |     |     |
| 62                | -40 +212                                         |       | 6 000    | 5 800  |       | 4 800  | 4 000 | 3 625 | 3 100 | 2 400 | 1 825 | 1 300 | 1 175 |     |     |     |     |
| MegaTech™ II      | 10 1212                                          |       | 0,000    | 0,000  |       | 1,000  | 1,000 | 0,020 | 0,100 | 2,100 | 1,020 | 1,000 | .,    |     |     |     |     |
| Col               | 70 . 212                                         |       |          | 5 900  |       | 1 900  | 4 000 | 2 625 | 2 100 | 2 400 | 1.925 | 1 200 |       |     |     |     |     |
| M2T®              | 10 +212                                          |       |          | 5,000  |       | 4,000  | 2,500 | 2,000 | 2 250 | 2,400 | 1,020 | 1,000 |       |     |     |     |     |
| IVIZ I            | -40 +212                                         |       |          | 0,000  |       | 4,000  | 3,300 | 3,000 | 2,230 | 2,000 |       |       |       |     |     |     |     |
| IVIOK.            | -40 +212                                         |       |          | 5,000  |       | 5 000  | 5 000 |       |       |       |       |       |       |     |     |     |     |
| ACIVI             | -40 +212                                         |       |          | 5,000  |       | 5,000  | 5,000 | 4.000 | 4.000 |       |       |       |       |     |     |     |     |
| 1014K+            | -40 +212                                         |       |          | 4,000  | 0.000 | 4,000  | 4,000 | 4,000 | 4,000 | 0.000 |       |       |       |     |     |     |     |
| M3K               | -40 +212                                         |       |          | 3,000  | 3,000 | 3,000  | 3,000 | 3,000 | 3,000 | 3,000 |       |       |       |     |     |     |     |
| M3KH              | -40 +250                                         |       |          | 3,000  |       | 3,000  |       |       |       |       |       |       |       |     |     |     |     |
| G2H               | -40 +275                                         |       |          |        |       |        |       |       |       |       | 1,650 | 1,300 | 1,175 |     |     |     |     |
| G2XH              | -40 +300                                         |       |          |        |       |        |       |       |       | 2,500 |       |       |       |     |     |     |     |
| G2AT-HMP          | -40 +300                                         |       |          |        |       |        | 4,250 | 3,500 | 3,000 |       |       |       |       |     |     |     |     |
| J2AT              | -40 +120                                         |       |          | 10,000 |       | 10,000 |       |       |       |       |       |       |       |     |     |     |     |
| G1                | -40 +212                                         |       | 3,625    | 3,275  | 3,125 | 2,600  | 2,325 | 1,900 | 1,525 | 1,275 | 925   | 725   | 600   |     |     |     |     |
| G1H               | -40 +275                                         |       |          | 2,750  |       | 2,250  | 2,000 | 1,500 | 1,250 | 1,000 | 625   | 725   | 600   |     |     |     |     |
| G3H(C3H)          | -40 +275                                         |       |          | 1,250  |       | 1,125  | 1,000 |       | 750   | 565   | 375   |       |       |     |     |     |     |
| GTH(C6H)          | -40 +275                                         |       | 500      | 400    | 400   | 400    | 400   | 350   | 300   |       |       |       |       |     |     |     |     |
| G4H               | -40 +275                                         |       |          |        |       |        |       |       | 300   | 212   | 200   |       |       |     |     |     |     |
| GMV               | -40 +275                                         |       |          |        |       |        |       |       | 350   | 300   | 250   | 162   | 112   | 68  | 62  | 56  | 56  |
| RLA               | -40 +212                                         |       | 250      | 250    | 250   | 250    | 200   | 200   | 200   | 160   |       |       |       |     |     |     |     |
| RLC               | -40 +275                                         |       |          |        |       |        |       |       |       | 200   | 200   | 200   | 200   | 150 | 150 | 150 |     |
| LOC               | -40 +212                                         |       |          | 300    |       | 300    | 300   | 300   | 300   |       |       |       |       | ĺ   |     |     |     |
| LOL               | -40 +212                                         |       | 300      | 300    | 300   | 300    | 300   | 300   | 300   |       |       |       |       |     |     |     |     |
| TR500             | -40 +250                                         |       |          | 500    |       | 500    | 500   | 500   | 500   | 500   |       | 1     |       |     |     |     |     |
| MegaTech™         | -40 +300                                         |       |          | 1000   |       | 1000   | 1000  | 1000  | 1000  | 1000  | 1000  | 500   | 500   | 500 | 500 |     |     |
| MegaTech™ 250     | -40 +212                                         |       |          | 250    |       | 250    | 250   | 250   | 250   | 250   | 250   |       |       |     |     |     |     |
| C5C               | -40 +212                                         |       |          | 3,000  | 3,000 | 2,250  | 2,000 | 1,750 | 1,500 | 800   | 625   | 500   | 350   | 350 |     |     |     |
| C5D               | -40 +300•                                        |       |          | 1.500  | 1.500 | 1.500  | 1.250 | 1.250 | 750   | 400   |       |       |       |     |     |     |     |
| C5M               | -40 +212                                         |       |          |        | 500   | 500    | 500   | 500   | 500   | 500   |       |       |       |     |     |     |     |
| C5E               | -40 +300•                                        |       |          | 1 500  | 1 500 | 1 500  | 1 250 | 1 250 | 750   | 400   | 300   |       |       |     |     |     |     |
|                   | 10 1000                                          |       |          | 1,000  | 1,000 | 1,000  | 1,200 | 1,200 | 100   | 100   | 000   |       |       |     |     |     |     |
| C14               | ***                                              |       |          | 1 500  | 1 500 | 1 500  | 1 000 | 800   | 800   | 800   |       |       |       |     |     |     |     |
| C14 (Static)      | -62 +72                                          |       |          | 3,000  | 3,000 | 2 500  | 2 000 | 1 500 | 1 200 | 1 000 |       |       |       |     |     |     |     |
| C14CT             | ***                                              |       |          | 3,000  | 3,000 | 1,500  | 1,000 | 1,000 | 1,200 | 1,000 |       |       |       |     |     |     |     |
| C14CT (Static)    | 170                                              |       |          |        |       | 2,500  | 2,000 |       |       |       |       |       |       |     |     |     |     |
| CT4CT (Static)    | +12                                              |       |          |        |       | 2,300  | 2,000 |       |       |       |       |       |       |     |     |     |     |
| TU7               | 65 . 200                                         | 2 500 | 2 000    | 0.750  | 2 500 | 2.250  | 2 000 |       | 1.250 | 1 000 |       |       |       |     |     |     |     |
|                   | -03 +200                                         | 2,300 | 3,000    | 2,730  | 2,000 | 2,230  | 2,000 |       | 1,200 | 1,000 |       |       |       |     |     |     |     |
| TH7NC             | -03 +200                                         | 2,500 | 3,000    | 2,750  | 2,500 | 2,250  | 2,000 |       | 1,200 | 1,000 |       |       |       |     |     |     |     |
| TH7DL             | -65 +200                                         |       |          | 2,750  | 2,500 | 2,250  | 2,000 |       |       |       |       |       |       |     |     |     |     |
| TH/NCDL           | -65 +200                                         |       |          | 2,750  |       | 2,250  | 2,000 |       |       |       |       |       |       |     |     |     |     |
| IH8               | -65 +200                                         |       | 5,000    | 5,000  |       | 4,000  | 3,500 |       | 2,250 | 2,000 |       |       |       |     |     |     |     |
| TH8NC             | -65 +200                                         |       | <u> </u> | 5,000  |       | 4,000  | 3,500 |       |       | ļ     |       | ļ     |       |     |     |     |     |
| TH18              | -67 +212                                         |       | <u> </u> | 3,000  | 3,000 | 3,000  | 3,000 | 3,000 |       | ļ     |       | ļ     |       |     |     | L   | L   |
| TH18NC            | -67 +212                                         |       |          | 3,000  | 3,000 | 3,000  | 3,000 | 3,000 |       |       |       |       |       |     |     |     |     |
|                   |                                                  |       |          |        |       |        |       |       |       |       |       |       |       |     |     |     |     |
| PolarSeal® AC134a | -22 +257                                         |       |          |        |       | 500    | 500   | 500   | 500   |       |       |       |       |     |     |     |     |
| PS188             | -40 +300                                         |       |          |        |       | 1,500  |       |       |       |       |       |       |       |     |     |     |     |
| PowerClean        | -40 +212                                         |       |          | 3,500  |       | 3,000  | 2,500 |       |       |       |       |       |       |     |     |     |     |
|                   | 10 1212                                          |       |          | 6,000  |       | 5,000  | 4,000 |       |       |       |       |       |       |     |     |     |     |

| HOSE/CPLG.<br>Selection                     |
|---------------------------------------------|
| GLOBALSPIRAL<br>Couplings                   |
| PCM/PCS<br>Ferrules                         |
| MEGACRIMP<br>Couplings                      |
| POWER<br>CRIMP<br>COUPLINGS                 |
| LOW<br>PRESSURE<br>COUPLINGS                |
| POLARSEAL<br>Couplings                      |
| C14<br>Couplings                            |
| PCTS<br>THERMO-<br>PLASTIC<br>COUPLINGS     |
| FIELD<br>ATTACHABLE<br>G1 & G2<br>COUPLINGS |
| FIELD<br>ATTACHABLE<br>C5<br>COUPLINGS      |
| SURELOK AIR<br>BRAKE<br>COUPLINGS           |
| QUICK<br>DISCONNECT<br>COUPLERS             |
| NEW BALL<br>VALVES                          |
| ACCESSORIES                                 |
| EQUIPMENT<br>AND PARTS                      |
|                                             |

\*\*\* Dynamic temperatures -65 +400; Static temperatures +73 +450 • All purpose fleet application service - 40°F to +300°F (-40°C to +149°C), air to +250°F



The World's Most Trusted Name in Belts, Hose and Hydraulics.



EQUIPMENT

HOSE/CPLG. Selection

GLOBALSPIRAL Couplings

PCM/PCS Ferrules

MEGACRIMP Couplings

POWER CRIMP COUPLINGS

low Pressure Couplings

POLARSEAL COUPLINGS

C14 Couplings

PCTS THERMO-PLASTIC COUPLINGS

FIELD ATTACHABLE G1 & G2 COUPLINGS

FIELD ATTACHABLE C5 COUPLINGS

SURELOK AIR Brake Couplings

QUICK DISCONNECT COUPLERS

NEW BALL VALVES

ACCESSORIES

EQUIPMENT AND PARTS

# Additional Temperature Limits for Gates Hydraulic Hoses

Caution: Water, water/oil emulsions and water/glycol solutions must be kept below the temperatures listed in the table below, relative to line pressures.

| Hose                                                                                                                                        | Pressure Lines     | Return Lines      |
|---------------------------------------------------------------------------------------------------------------------------------------------|--------------------|-------------------|
| EFG6K, EFG5K, EFG4K,<br>EFG3K, G6K, G5K, G3K,<br>C12, G2, G2L, MCPB+,<br>M2T®, M6K, M5K, M4K+,<br>M3K, RFS, RLA, C5C, C5E,<br>CPS, LOC, LOL | +200°F<br>(+93°C)  | +180°F<br>(+82°C) |
| G2H, G1H, MegaTech <sup>™</sup> Line,<br>G2AT-HMP, G2XH, C5D,<br>G3H, GTH, G4H, GMV,<br>RLC, TR500, PowerClean <sup>™</sup> ,<br>M3KH, M4KH | +225°F<br>(+107°C) | +180°F<br>(+82°C) |

### Maximum Temperature Limits for Water, Water/Oil Emulsions and Water/Glycol Solutions

**Caution:** The fluid manufacturer's recommended maximum operating temperature for any given fluid must not be exceeded. If different than the above listed hose temperatures, the lower limit must take precedence. Actual service life at temperatures approaching the recommended limit will depend on the particular application and the fluid being used in the hose. Intermittent (up to 10 percent of operating time) refers to momentary temperature surges. Detrimental effects increase with increased exposure to elevated temperatures.

Do NOT expose hose to maximum temperature and maximum rated working pressure at the same time.



# SELECTION, INSTALLATION AND MAINTENANCE OF HOSE AND HOSE ASSEMBLIES— SAE J1273 OCT96 SAE Recommended Practice

Report of the Fluid Conductors and Connectors Technical Committee, approved September 1979 and reaffirmed May 1986. Completely revised by the SAE Fluid Conductors and Connectors Technical Committee SC2— Hydraulic Hose and Hose Fittings October 1996. Rationale statement available.

## 1. Scope

Hose (also includes hose assemblies) has a finite life and there are a number of factors which will reduce its life. This SAE recommended practice is intended as a guide to assist system designers and/or users in the selection, installation, and maintenance of hose. The designers and users must make a systematic review of each application and then select, install, and maintain the hose to fulfill the requirements of the application. The following are general guidelines and are not necessarily a complete list.

WARNING—IMPROPER SELECTION, INSTALLATION, OR MAINTENANCE MAY RESULT IN PREMATURE FAILURES, BODILY INJURY, OR PROPERTY DAMAGE.

# 2. References

### 2.1 Applicable Documents

The following publications form a part of this specification to the extent specified herein. The latest issue of SAE publications shall apply.

2.1.1 SAE PUBLICATIONS — Available from SAE, 400 Commonwealth Drive, Warrendale, PA 15096-0001.

> J516—Hydraulic Hose Fittings J517—Hydraulic Hose

### 3. Selection

The following is a list of factors which must be considered before final hose selection can be made:

### 3.1 Pressure

After determining the system pressure, hose selection must be made so that the recommended maximum operating pressure is equal to or greater than the system pressure. Surge pressures higher than the maximum operating pressure will shorten hose life and must be taken into account by the hydraulic designer.

### 3.2 Suction

Hoses used for suction applications must be selected to ensure the hose will withstand the negative pressure of the system.

### 3.3 Temperature

Care must be taken to ensure that fluid and ambient temperatures, both static and transient, do not exceed the limitations of the hose. Special care must be taken when routing near hot manifolds.

### 3.4 Fluid Compatibility

Hose selection must assure compatibility of the hose tube, cover, and fittings with the fluid used. Additional caution must be observed in hose selection for gaseous applications.

### 3.5 Size

Transmission of power by means of pressurized fluid varies with pressure and rate of flow. The size of the components must be adequate to keep pressure losses to a minimum and avoid damage to the hose due to heat generation or excessive turbulence.

### 3.6 Routing

Attention must be given to optimum routing to minimize inherent problems.

### 3.7 Environment

Care must be taken to ensure that the hose and fittings are either compatible with or protected from the environment to which they are exposed. Environmental conditions such as ultraviolet light, ozone, salt water, chemicals, and air pollutants can cause degradation and premature failure and, therefore, must be considered.



**C**8



HOSE/CPLG. Selection

EQUIPMENT

GLOBALSPIRAL Couplings

PCM/PCS Ferrules

MEGACRIMP COUPLINGS

POWER CRIMP COUPLINGS

low Pressure Couplings

POLARSEAL Couplings

C14 Couplings

PCTS THERMO-PLASTIC

COUPLINGS

FIELD ATTACHABLE G1 & G2

COUPLINGS

ATTACHABLE C5 COUPLINGS

SURELOK AIR Brake Couplings

QUICK DISCONNECT

COUPLERS

NEW BALL VALVES

ACCESSORIES

EQUIPMENT

AND PARTS



HOSE/CPLG.

SELECTION

GLOBALSPIRAL

COUPLINGS

PCM/PCS

FERRULES

MEGACRIMP COUPLINGS

POWER

CRIMP

LOW

COUPLINGS

PRESSURE

COUPLINGS

POLARSEAL

COUPLINGS

COUPLINGS

C14

PCTS

THERMO-

COUPLINGS

PLASTIC

Field Attachable

G1 & G2

FIELD Attachable

C5

COUPLINGS

COUPLINGS

SURELOK AIR

COUPLINGS

BRAKE

QUICK DISCONNECT

COUPLERS

NEW BALL VALVES

ACCESSORIES

FOUIPMENT

AND PARTS

# **Hose & Coupling Section**

### 3.8 Mechanical Loads

External forces can significantly reduce hose life. Mechanical loads which must be considered include excessive flexing, twisting, kinking, tensile or side loads, bend radius, and vibration. Use of swivel type fittings or adapters may be required to ensure no twist is put into the hose. Unusual applications may require special testing prior to hose selection.

### 3.9 Abrasion

While a hose is designed with a reasonable level of abrasion resistance, care must be taken to protect the hose from excessive abrasion which can result in erosion, snagging, and cutting of the hose cover. Exposure of the reinforcement will significantly accelerate hose failure.

### 3.10 Proper End Fitting

Care must be taken to ensure proper compatibility exists between the hose and coupling selected based on the manufacturer's recommendations substantiated by testing to industry standards such as SAE J517. End fitting components from one manufacturer are usually not compatible with end fitting components supplied by another manufacturer (i.e., using a hose fitting nipple from one manufacturer with a hose socket from another manufacturer). It is the responsibility of the fabricator to consult the manufacturer's written instruction or the manufacturer directly for proper end fitting componentry.

### 3.11 Length

When establishing proper hose length, motion absorption, hose length changes due to pressure, as well as hose and machine tolerances must be considered.

### **3.12 Specifications and Standards**

When selecting hose, government, industry, and manufacturers' specifications and recommendations must be reviewed as applicable.

### 3.13 Hose Cleanliness

Hose components vary in cleanliness levels. Care must be taken to ensure that the assemblies selected have an adequate level of cleanliness for the application.

### 3.14 Electrical Conductivity

Certain applications require that hose be non-conductive to prevent electrical current flow. Other applications require the hose to be sufficiently conductive to drain off static electricity. Hose and fittings must be chosen with these needs in mind.

### 4. Installation

After selection of proper hose, the following factors must be considered by the installer.

### 4.1 Pre-Installation Inspection

Prior to installation, a careful examination of the hose must be performed. All components must be checked for correct style, size, and length. In addition, the hose must be examined for cleanliness, I.D. obstructions, blisters, loose cover, or any other visible defects.

### 4.2 Follow Manufacturers' Assembly Instructions

Hose assemblies may be fabricated by the manufacturer, an agent for or customer of the manufacturer, or by the user. Fabrication of permanently attached fittings to hydraulic hose requires specialized assembly equipment. Field-attachable fittings (screw style and segment clamp style) can usually be assembled without specialized equipment, although many manufacturers provide equipment to assist in this operation. SAE J517 hose from one manufacturer is usually not compatible with SAE J516 fittings supplied by another manufacturer. It is the responsibility of the fabricator to consult the manufacturer's written assembly instructions or the manufacturers directly before intermixing hose and fittings from two manufacturers. Similarly, assembly equipment from one manufacturer is usually not interchangeable with that of another manufacturer. It is the responsibility of the fabricator to consult the manufacturer's written instructions or the manufacturer directly for proper assembly equipment. Always follow the manufacturer's instructions for proper preparation and fabrication of hose assemblies.

### 4.3 Minimum Bend Radius

Installation at less than minimum bend radius may significantly reduce hose life. Particular attention must be given to preclude sharp bending at the hose/ fitting juncture.



### 4.4 Twist Angle and Orientation

Hose installations must be such that relative motion of machine components produces bending of the hose rather than twisting.

### 4.5 Securement

In many applications, it may be necessary to restrain, protect, or guide the hose to protect it from damage by unnecessary flexing, pressure surges, and contact with other mechanical components. Care must be taken to ensure such restraints do not introduce additional stress or wear points.

### 4.6 Proper Connection of Ports

Proper physical installation of the hose requires a correctly installed port connection while ensuring that no twist or torque is put into the hose.

### 4.7 Avoid External Damage

Proper installation is not complete without ensuring that tensile loads, side loads, kinking, flattening, potential abrasion, thread damage, or damage to sealing surfaces are corrected or eliminated.

### 4.8 System Check Out

After completing the installation, all air entrapment must be eliminated, and the system pressurized to the maximum system pressure and checked for proper function and freedom from leaks.

NOTE-Avoid potential hazardous areas while testing.

### 5. Maintenance

Even with proper selection and installation, hose life may be significantly reduced without a continuing maintenance program.

Frequency should be determined by the severity of the application and risk potential. A maintenance program should include the following as a minimum:

### 5.1 Hose Storage

Hose products in storage can be affected adversely by temperature, humidity, ozone, sunlight, oils, solvents, corrosive liquids and fumes, insects, rodents, and radioactive materials. Storage areas should be relatively cool and dark and free of dust, dirt, dampness, and mildew.

### **5.2 Visual Inspections**

Any of the following conditions requires replacement of the hose:

- a. Leaks at fitting or in hose. (Leaking fluid is a fire hazard.)
- b. Damaged, cut, or abraded cover. (Any reinforcement exposed.)
- c. Kinked, crushed, flattened, or twisted hose.
- d. Hard, stiff, heat cracked, or charred hose.
- e. Blistered, soft, degraded, or loose cover.
- f. Cracked, damaged, or badly corroded fittings.
- g. Fitting slippage on hose.

### **5.3 Visual Inspections**

The following items must be tightened, repaired, or replaced as required:

- a. Leaking port conditions.
- b. Clamps, guards, shields.
- c. System fluid level, fluid type, and any air entrapment.

### **5.4 Functional Test**

Operate the system at maximum operating pressure and check for possible malfunctions and freedom from leaks.

NOTE-Avoid potential hazardous areas while testing.

### **5.5 Replacement Intervals**

Specific replacement intervals must be considered based on previous service life, government or industry recommendations, or when failures could result in unacceptable down time, damage, or injury risk.

| HOSE/CPLG.<br>SELECTION                     |
|---------------------------------------------|
| GLOBALSPIRAL<br>Couplings                   |
| PCM/PCS<br>FERRULES                         |
| MEGACRIMP<br>Couplings                      |
| POWER<br>CRIMP<br>COUPLINGS                 |
| LOW<br>PRESSURE<br>COUPLINGS                |
| POLARSEAL<br>Couplings                      |
| C14<br>COUPLINGS                            |
| PCTS<br>THERMO-<br>Plastic<br>Couplings     |
| FIELD<br>ATTACHABLE<br>G1 & G2<br>Couplings |
| FIELD<br>ATTACHABLE<br>C5<br>COUPLINGS      |
| SURELOK AIR<br>Brake<br>Couplings           |
| QUICK<br>Disconnect<br>Couplers             |
| NEW BALL<br>VALVES                          |
| ACCESSORIES                                 |
| EQUIPMENT<br>AND PARTS                      |
|                                             |

-Equipment



The World's Most Trusted Name in Belts, Hose and Hydraulics.

www.gates.com/hydraulics



EQUIPMENT

HOSE/CPLG. SELECTION

GLOBALSPIRAL COUPLINGS

PCM/PCS

FERRULES

MEGACRIMP

COUPLINGS

POWER

CRIMP

LOW

COUPLINGS

PRESSURE

COUPLINGS

POLARSEAL

COUPLINGS

COUPLINGS

C14

PCTS

THERMO-

COUPLINGS

ATTACHABLE

COUPLINGS

ATTACHABLE C5 COUPLINGS

SURELOK AIR

COUPLINGS

BRAKE

QUICK DISCONNECT

COUPLERS

NFW BALL

ACCESSORIES

FOUIPMENT

AND PARTS

VALVES

PLASTIC

FIELD

G1 & G2

FIELD

# **Hose & Coupling Section**

# **DOT FMVSS 106-74**

# MOTOR VEHICLE SAFETY STANDARD FOR BRAKE HOSES

Gates has received an increasing number of inquiries about the Department of Transportation (DOT) regulation FMVSS-106 regarding air brake hose. The requirements of the standard were issued by the National Highway Traffic Safety Administration and are published in the Federal Register, 49 Code of Federal Regulations, Part 571. MVSS 106 Brake Hoses.

NOTE: Anyone making brake assemblies must be registered with the Department of Transportation.

### What is FMVSS-106?

The standard is written with specifics on labeling, performance tests, tests procedures, and registration. It is not a standard for design specifications for motor vehicle brake hose, brake hose assemblies, or brake hose end fittings. The Standard No. 106 will ensure that each user of brake hose will be supplied only the highest quality of hose. DOT will conduct random performance testing in accordance with the test procedures to ensure that the hoses, couplings, and assemblies meet FMVSS 106.

"The purpose of the standard is to reduce deaths and injuries occurring as a result of brake system failure from pressure or vacuum loss due to hose or hose assembly rupture." The regulations will apply to all over-the-road vehicles including trailers and motorcycles. Off-the-road vehicles will not be regulated if they are designed to operate on those other than public roads.

### Basic Provisions of FMVSS-106.

- 1. Three types of brake hose are covered (hydraulic, air, and vacuum brake) together with couplings and hose assemblies. At this point, we will only focus on air brake hose and assemblies.
- 2. Performance level for brake hose is established instead of design specifications.
- **3.** Permanent as well as reusable fittings are permissible with air brake hose. Inside and outside diameters standards for air brake hose intended for use with field attachable couplings have been established. These hoses are identified as Type I and Type II.

# Gates Customer/Assembler with Regard to FMVSS-106.

**1.** Test (dimensional and pressure) each assembly or per customer's requirements before it is packaged and delivered to the customer.

**2.** Two of every 100 air brake hose assemblies produced or per customer's requirements are subjected to hydrostatic pressure testing and tensile strength (destructive) testing.

### Labeling of Air Brake Hose.

Any customer crimping air brake assemblies must be registered with the National Traffic Safety Administration (NHTSA).

### The National Highway Traffic Safety Administration (NHTSA) requires:

- 1. Product DOT CERTIFICATION. (Gates Corporation responsibility. The Gates logo is our DOT registration.)
- 2. Registration of the assembler. (Customer/Distributor responsibility.)\*
- **3.** Permanent assembly identification. (Customer/ Distributor responsibility.) Refer to Gates frosted air brake hose labels below.

\* To begin the registration process, please complete the BRAKE HOSE REGISTRATION application form on the following page. You can mail or fax the completed form to the address and number listed on the form.

# **Frosted Air Brake Hose Labels**

Product Number: 7484-0023

To assist you in complying with the NHTSA requirement for identifying brake hose assemblies, Gates now offers mylar hose labels.

- Self-adhesive
- 1" wide by 3-3/4" long, with a 1-1/2" by 1" white area on one end for printed information
- Format suitable for typewriters, computer printers or hand writing
- Accepts 9-10 typed characters per row, 4 or 5 on a row
- Wrap-around label resists damage from elements

### Label application procedure:

- **1.** Print appropriate information on label.
- **2.** Wrap tag around hose assembly, printed end first.
- **3.** Cover printed end with clear mylar tail of label.

Comes in 500 labels per pack.





Gates Corporation





|                                                                                                                                                                                                                            | EQUIPMENT                   |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------|
| <b>Brake Hose Registration Application</b><br>"PLEASE TYPE or PRINT CLEARLY" AND SUBMIT BRAKE HOSE APPLICATION TO: JEANETTE GREENFIELD<br>AT THE FOLLOWING NATIONAL HIGHWAY TRAFFIC SAFETY ADMINISTRATION (NHTSA) ADDRESS: | HOSE/CPLG.<br>Selection     |
| Jeanette Greenfield                                                                                                                                                                                                        | GLOBALSPIRAL<br>COUPLINGS   |
| Office of Vehicle Safety Compliance<br>400 Seventh Street, S.W. NSA-32<br>Washington, DC 20590                                                                                                                             | PCM/PCS<br>FERRULES         |
| Phone (202) 366-5317<br>Fax (202) 366-1024<br>www.nhtsa.dot.gov                                                                                                                                                            | MEGACRIMP<br>Couplings      |
| DATE:                                                                                                                                                                                                                      | POWER<br>CRIMP<br>COURLINGS |
| BRAKE HOSE MANUFACTURER'S ADDRESS                                                                                                                                                                                          |                             |
| Plant Name:                                                                                                                                                                                                                |                             |
| Post Office Box No.:                                                                                                                                                                                                       | COUPLINGS                   |
| Street:                                                                                                                                                                                                                    | POLARSEAL                   |
| City:                                                                                                                                                                                                                      | COUPLINGS                   |
| * DESIGNATION SYMBOL(s):                                                                                                                                                                                                   | C14                         |
| State (Province):                                                                                                                                                                                                          | COUPLINGS                   |
| Country:                                                                                                                                                                                                                   | PCTS                        |
| Zip Code:                                                                                                                                                                                                                  | THERMO-<br>PLASTIC          |
| Plant Contact Person:                                                                                                                                                                                                      | COUPLINGS                   |
| Phone Number:                                                                                                                                                                                                              | FIELD                       |
| Fax Number:                                                                                                                                                                                                                | G1 & G2<br>COUPLINGS        |
| ** (COMPLETE ONLY IF THIS IS A FOREIGN MANUFACTURER) BRAKE HOSE MANUFACTURER'S US AGENT                                                                                                                                    | FIELD                       |
| Agent Name:                                                                                                                                                                                                                | ATTACHABLE<br>C5            |
| Post Office Box No.:                                                                                                                                                                                                       | COUPLINGS                   |
| Street:                                                                                                                                                                                                                    | SURELOK AIR                 |
| City:                                                                                                                                                                                                                      | BRAKE<br>COUPLINGS          |
| State:                                                                                                                                                                                                                     |                             |
| Country:                                                                                                                                                                                                                   | QUICK<br>DISCONNECT         |
| Zip Code:                                                                                                                                                                                                                  | COUPLERS                    |
| Agent Contact Person:                                                                                                                                                                                                      | NEW BALL                    |
| Agent Fax Number:                                                                                                                                                                                                          | VALVEO                      |
| Agent Phone Number:                                                                                                                                                                                                        | ACCESSORIES                 |
| * DESIGNATION SYMBOL(s): May consist of block capital letters, numerals or a symbol.                                                                                                                                       | EQUIPMENT<br>AND PARTS      |





EQUIPMENT

HOSE/CPLG. SELECTION

# GLOBALSPIRAL

COUPLINGS

PCM/PCS Ferrules

MEGACRIMP COUPLINGS

Power Crimp Couplings

LOW Pressure Couplings

POLARSEAL COUPLINGS

C14 Couplings

PCTS THERMO-PLASTIC COUPLINGS

FIELD Attachable G1 & G2 Couplings

FIELD Attachable C5 Couplings

SURELOK AIR BRAKE COUPLINGS

QUICK DISCONNECT COUPLERS

NEW BALL VALVES

ACCESSORIES

EQUIPMENT AND PARTS

C13

# How to Make Hose Assemblies of Specific Lengths

Select the hose and couplings required to make the desired hydraulic assembly. Measure the entire length of the assembly. Then use the formula below to calculate the required hose cut length for the assembly.

# Hose Cut Length = Assembly Overall Length Minus C1 Minus C2

Cut-off value "C" is the length of that part of the coupling not directly in contact with or applied to the hose. Therefore, subtract the two "C" values from the total length of the assembly and you will have the approximate hose length to be replaced. Assembly Overall Length



Hose Length = Assembly Overall Length Minus (C1 + C2)

Example: Total assembly overall length = 12.5"

(Assembly consists of 3/8" G1 hose with 1/2" Male Pipe (6G-8MP) and 3/8" Female JIC (6G-6FJX) terminations)

### Assembly Overall Length – C1 – C2 = Hose Cut Length 12.5" – 1.36 – 1.19 = 9.95" (+/- 3/16" tolerance)

Note the "cut-off" measurement "C" for each of the couplings as listed in the specifications tables.

# Male Pipe (NPTF - 30° Cone Seat)

| Desc   | #           |            | $\Theta$ | Ð      | H1 (ln.) | L (In.) | C (In.) |
|--------|-------------|------------|----------|--------|----------|---------|---------|
| 4G-2MP | G25100-0402 | 7100-10025 | 1/4      | 1/8—27 | 1/2      | 1.97    | 0.94    |
| 4G-4MP | G25100-0404 | 7100-10032 | 1/4      | 1/4—18 | 9/16     | 207     | 1.04    |
| 4G-6MP | G25100-0406 | 7100-10045 | 1/4      | 3/8—18 | 11/16    | 2.13    | 1.10    |
| 4G-8MP | G25100-0408 | 7100-10055 | 1/4      | 1/2—14 | 7/8      | 2.40    | 1.38    |
| 5G-4MP | G25100-0504 | 7100-00065 | 5/16     | 1/4—18 | 5/8      | 2 28    | 1.18    |
| 6G-4MP | G25100-0604 | 7100-10075 | 3/8      | 1/4—18 | 5/8      | 2.28    | 1.19    |
| 6G-6MP | G25100-0606 | 7100-10085 | 3/8      | 3/8—18 | 11/16    | 2.19    | 1.09    |
| 6G-8MP | G25100-0608 | 7100-10095 | 3/8      | 1/2—14 | 7/8      | 2.46    | 1.36    |
| 8G-6MP | G25100-0806 | 7100-00105 | 1/2      | 3/8—18 | 13/16    | 2.60    | .12     |



# Female JIC 37° Flare Swivel

| Desc    | #           |            | Θ    | Ð       | H1 (ln.) | H2 (In.) | L (In.) | C (In.) |
|---------|-------------|------------|------|---------|----------|----------|---------|---------|
| 4G-4FJX | G25170-0404 | 7100-10885 | 1/4  | 7/16—20 | 1/2      | 9/16     | 2.10    | 1.08    |
| 4G-5FJX | G25170-0405 | 7100-10895 | 1/4  | 1/2—20  | 1/2      | 11/16    | 2.21    | 1.19    |
| 4G-6FJX | G25170-0406 | 7100-10905 | 1/4  | 9/16—18 | 9/16     | 3/4      | 2.22    | 1.19    |
| 5G-5FJX | G25170-0505 | 7100-00915 | 5/16 | 1/2—20  | 5/8      | 11/16    | 2.23    | 1.13    |
| 5G-6FJX | G25170-0506 | 7100-00925 | 5/16 | 9/16—18 | 5/8      | 3/4      | 2.31    | 1 21    |
| 6G-4FJX | G25170-0604 | 7100-10925 | 3/8  | 7/16—20 | 5/8      | 9/16     | 2.30    | 1.20    |
| 6G-5FJX | G25170-0605 | 7100-10935 | 3/8  | 1/2—20  | 5/8      | 11/16    | 2.23    | 1.13    |
| 6G-6FJX | G25170-0606 | 7100-10945 | 3/8  | 9/16—18 | 5/8      | 3/4      | 2.31 🤇  | 1.19    |
| 6G-8FJX | G25170-0608 | 7100-10955 | 3/8  | 3/4—16  | 11/16    | 7/8      | 2.48    | 1.38    |



### **SAE Length Tolerances for Hydraulic Hose Assemblies and Specified Hose Lengths** (Reprinted from National Hose Assemblies Manufacturers Association NHAM-STD-2)

### Length

For cut lengths from 0 up to and including 12" For cut lengths above 12" up to and including 18" For cut lengths above 18" up to and including 36" For cut lengths above 36"

### Tolerance

+ 1/8" + 3/16"

÷ 1/4"

+ 1% of length measured to the nearest 1/8"



Gates Corporation







EQUIPMENT

### How to Describe Gates Hydraulic Hose Assemblies - con't. HOSE/CPLG. SELECTION -ſH GLOBALSPIRAL COUPLINGS **Coupling A Information Coupling B Information** Hose Type PCM/PCS FERRULES Male Female Gates \_\_\_\_ \_\_ I.D. \_\_\_ Male Female or Angle \_\_\_\_\_° Drop: OS OM OL OXL Angle \_\_\_\_\_° Drop: OS OM OL OXL SAE 100R MEGACRIMP COUPLINGS or Drop Length\_\_\_\_ (mm) or Drop Length\_\_\_\_ (mm) **Dash Size:** Thread Thread $\square 2 \square 3$ 4 5 6 POWER 8 10 12 16 20 CRIMP JIC (37° Flare) JIC (37° Flare) COUPLINGS 40 48 24 32 56 NPTF □ NPTF 64 LOW O-Ring Boss O-Ring Boss Temperature \_\_\_\_\_ PRESSURE COUPLINGS Working Pressure (psi): Flat-Face O-Ring Flat-Face O-Ring (ORFS) 100 (ORFS) 101-250 POLARSEAL COUPLINGS 250-499 500-1000 Code 61 Code 61 1001-2999 3000-3999 4000-5999 6000 C14 Code 62 Code 62 COUPLINGS Application BSPP BSPP Return Line Pressure Line PCTS DIN (Light/Heavy) DIN (Light/Heavy) Intake Line High Pressure Line THERMO-PLASTIC Special Fluid \_ Other Other COUPLINGS FIELD Overall **Hose Guards** ATTACHABLE In. Imm Length G1 & G2 COUPLINGS Full Partial From End Coupling Length Length of Coupling Orientation: Wire Spring FIELD ATTACHABLE C5 COUPLINGS 225 180 SURELOK AIR Flat Armor Spring BRAKE 270° COUPLINGS OLIICK DISCONNECT **Nylon Sleeve** COUPLERS Measure from centerline of flanged head to centerline of flanged head NEW BALL for length of assembly. VALVES **Plastic Coil Sleeve** Offset angle is measured with far coupling vertically downward. ACCESSORIES Orientation angle is measured clockwise. FOUIPMENT AND PARTS

C15

Gates Corporation



# **Hose Assembly Routing Tips**

Proper hose installation is essential for satisfactory performance. If hose length is excessive, the appearance of the installation will be unsatisfactory and unnecessary cost of equipment will be involved. If hose assemblies are too short to permit adequate flexing and changes in length due to expansion or contraction, hose service life will be reduced.

The following diagrams show proper hose installations which provide maximum performance and cost savings. Consider these examples in determining length of a specific assembly.



When hose installation is straight, allow enough slack in hose line to provide for length changes which will occur when pressure is applied.



Adequate hose length is necessary to distribute movement on flexing applications and to avoid abrasion.



Avoid twisting of hose lines bent in two planes by clamping hose at change of plane.



Reduce number of pipe thread joints by using hydraulic adapters instead of pipe fittings.



When radius is below the required minimum, use an angle adapter to avoid sharp bends.





Use proper angle adapters to avoid tight bend in hose.





Prevent twisting and distortion by bending hose in same plane as the motion of the port to which hose is connected.





Route hose directly by using 45° and/or 90° adapter and fittings. Avoid excessive hose length to improve appearance.



Note: To allow for length changes when hose is pressurized, do not clamp at bends so that curves will absorb changes. Do not clamp high and low pressure lines together. SELECTION GLOBALSPIRAL COUPLINGS PCM/PCS FERRULES MEGACRIMP COUPLINGS

EQUIPMENT

HOSE/CPLG.

POWER CRIMP COUPLINGS

low Pressure Couplings

| POLARSEAL<br>Couplings                      |
|---------------------------------------------|
| C14<br>Couplings                            |
| PCTS<br>THERMO-<br>PLASTIC<br>COUPLINGS     |
| FIELD<br>ATTACHABLE<br>G1 & G2<br>Couplings |
| FIELD<br>ATTACHABLE<br>C5<br>COUPLINGS      |
| SURELOK AIR<br>Brake<br>Couplings           |
| QUICK<br>DISCONNECT<br>COUPLERS             |
| NEW BALL<br>VALVES                          |
| ACCESSORIES                                 |
| EQUIPMENT<br>AND PARTS                      |



The World's Most Trusted Name in Belts, Hose and Hydraulics.

www.gates.com/hydraulics



Hose Assembly Routing Tips - con't.

EQUIPMENT

### HOSE/CPLG. SELECTION

GLOBALSPIRAL COUPLINGS

PCM/PCS FERRULES

MEGACRIMP COUPLINGS

POWER CRIMP COUPLINGS

LOW PRESSURE COUPLINGS

POLARSEAL COUPLINGS

C14 COUPLINGS

PCTS THERMO-PLASTIC COUPLINGS

FIELD ATTACHABLE G1 & G2 COUPLINGS

FIFI D ATTACHABLE C5 COUPLINGS

SURELOK AIR BRAKE COUPLINGS

OLIICK DISCONNECT COUPLERS

NEW BALL VALVES

ACCESSORIES

FOUIPMENT



High ambient temperatures shorten hose life, so make sure hose is kept away from hot parts. If this is not possible, insulate hose.



To avoid hose collapse and flow restriction, keep hose bend radius as large as possible. Refer to hose specification tables for minimum bend radius.



When installing hose, make sure it is not twisted. Pressure applied to a twisted hose can result in hose failure or loosening of connections.



Elbows and adapters should be used to relieve strain on the assembly, and to provide neater installations which will be more accessible for inspection and maintenance.



Run hose in the installation so that it avoids rubbing and abrasion. Often, clamps are required to support long hose runs or to keep hose away from moving parts. Use clamps of the correct size. A clamp too large allows hose to move inside the clamp and causes abrasion.

# Hydraulic Flareless Assembly Procedure (per SAE J514 6.1.3 & 6.1.4)

- 1. Bottom the tube in the coupling, and tighten the nut until the ferrule just grips the tube. With a little experience, the technician can determine this point by feel. If the couplings are bench assembled, the gripping action can be determined by rotating the tube by hand as the nut is drawn down. When the tube can no longer be turned by hand, the ferrule has started to grip the tube.
- 2. After the ferrule grips the tube, tighten the nut one full turn. This may vary slightly with different tubing materials, but for general practice, it is a good rule for the technician to follow.

 $\lambda a$ 

Put socket in vise as

Put socket in vise as shown. Turning counter-clockwise, thread hose into socket. Leave a gap of 1/32" to 1/16" betweer end of hose and inside shoulder of socket.

2.

Oil insert thread on з. nipple thoroughly

Assembly of Field Attachable Couplings — Five Easy Steps







5 Inspect assembly internally for cut or bulged tube obstructions and cleanliness.

AND PARTS

C17

Be sure to thoroughly oil hose.





# **Coupling Selection**

### **End Configuration Selection**

It is important to keep in mind that the hose assembly (coupling and hose) is only one component of the system. In choosing the correct end terminations for the couplings attached to the hose, formal design standards and sound engineering judgement should be used.

In the absence of formal design standards, consider the following factors in choosing the proper end termination:

- Pressure
- Impulse frequency, amplitude and wave form
- Vibration
- Corrosion
- Dissimilar metals (galvanic corrosion)
- Maintenance procedures and frequency
- Installation reliability
- Connection's risk in the system
- Exposure to the elements
- Operator's and/or bystander's exposure to the connection
- Installation, operation and service activities and practices that affect safety

If there are any questions as to what end fittings should be used, Gates recommends that you consult your field sales representative or the Gates Hose and Connector Product Application Group for assistance.

### **Stem and Ferrule Selection**

Choosing the proper stem and ferrule depends on the specific hose and termination to be used in the assembly. Check the Gates Crimp Data manual to ensure proper hose assembly components and crimp specifications. Gates also offers eCrimp<sup>™</sup>, an online crimp database that can be downloaded. The site is www.gates.com/ecrimp. The user must have Microsoft Access 2000.

| <text></text>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 545-                                                                                                            | ( None ) Tornel to ( Anno Table ) Torne ( None ) None ( Torne ) - Anno 19<br>From Tornel toria ( Toria Trees - Marca Marca ) 25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <text></text>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                 | The E-Crimp Database                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| <text></text>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Keidegi                                                                                                         | A spline is a Maximum Assesse program that stress this user to find and part using data for basis flyateging and the basis flyateging.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Martin Marti                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Part Branchurgen                                                                                                | The property on the and index only the Westernike May 1 (2) (2) (3) (3) (3) (3) (3) (4) (4) (4) (4) (4) (4) (4) (4) (4) (4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Privat Part Prese                                                                                               | rousingfunt op forder fo he per or philos engling grant hone to be for the fagers being                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Activity and the second of the                           | Industrial Party Proper                                                                                         | This is the first of the physical diverse that they have been as an anomalies by the set and the and the set of<br>the first first first of the set of diverse meaning with the set of the set of the set of the physical diverse to of the physical diverse to of the set                     |
| And it         Sector         Contract                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Antonio Alternative                                                                                             | <ul> <li>An example of a second s</li></ul>                 |
| Compared to the second processing of the                                 | Auto Off                                                                                                        | <b>G</b> (                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Image: Provide a start of the start of                                                           | Noted                                                                                                           | THE Devenued II Crime New? In the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Control     Control       Control     Contrel       Control     Contrel                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Elenar                                                                                                          | car to care of a cost owner. This department                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Sector        Sector                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                 | Received in the second se                                                                                                                                                                                                                                                                   |
| Change below and the set of the s                           | Contractions<br>Contractions<br>Contractions                                                                    | The reso that boarding \$10, 10 that mode (2004) and variant CP finance, in 200400, 12004 the lower<br>strengtheners of the Billing CP or 2005. The character is taking the rate of the one PC house, the springer<br>deep county of the character is the springer of the rate of the character is the springer<br>strength of the character is the character is the springer of the character is the springer<br>strength of the character is the springer of the springer of the springer of the springer<br>strength of the springer is the springer of the springer of the springer of the springer<br>strength of the springer is the springer of the springer of the springer of the springer of the springer<br>strength of the springer is the springer of the springerood of the springer o |
| Chapters for instructions for the Cit, coupling on the Multi-Coupy <sup>2</sup> 5-29<br>Universe instructions for the first data with the section section of the Multi-Coupy <sup>2</sup> 5-29<br>Universe instructions for the first data with the section section section section sections<br>with the section | This from a frank                                                                                               | Hanalda Castigna                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | the second se |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                 | Crimping Instructions for the GL coopling on the MultileCrimp <sup>®</sup> # 29                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                 | Colleging Instructions for the QL coupling on the MakileComp <sup>®</sup> 4-28<br>5, announce of any first advision of the sector brought of the boot of the sector brought and compare the page                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | <u></u>                                                                                                         | Crimping Andructions for the QL coupling on the Maide Coup <sup>+</sup> + 21<br>5, environment of their the articles relation to the relation of the Part and the relation of the relation           |
| ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                 | Chapter Internations No. Hos. Go. coupling and the Mailed Coope <sup>®</sup> 4-19<br>Transmission of hose in an excitation of the mail of            |
| and the second sec                                                                                                                                                                                                                                                                       |                                                                                                                 | Chapter Internations Not the QL coupling and the Mailedongs <sup>2</sup> # 29<br>based on the one of a set of a set of an extension of the mail of the set of a set of the set of           |

After determining the proper coupling components, refer to the Table of Contents in this catalog to find the proper coupling section. The ferrules are at the end of each coupling section.

### **Stem Selection**

Different hoses may require different coupling styles. To make your selection, determine the correct stem to be used.

- There are two functional ends of the stem to consider:
- 1. the hose end for hose attachment;
- 2. the thread end for port attachment.



References to the coupling type(s) recommended for a specific hose are listed on the individual hose data pages; for example, G5K hose specifies GS and PCM couplings.

The thread end of a coupling (or adapter) can be identified by comparing the coupling being replaced or by measuring the port or thread end to which it is to be attached.

See thread end identification nomenclature.



EQUIPMENT

### HOSE/CPLG. SELECTION

GLOBALSPIRAL COUPLINGS

PCM/PCS FERRULES

MEGACRIMP COUPLINGS

POWER CRIMP COUPLINGS

LOW PRESSURE COUPLINGS Code

А

AB

API

BBDS

**BKHD** 

**BSPP** 

**BSPT** 

В

ΒJ

ΒL

BS

С

CC

DH

DL

FABX

FBO

FFGX

FFN

FOR

FFS

FG

FKX

FLC

FLH

FT

HLE

ΗM

ΗU

J

JIS

Κ

HLEC

FLOS

FL

FF

**FBFFOR** 

F

POLARSEAL COUPLINGS

C14 COUPLINGS

PCTS THERMO-PLASTIC COUPLINGS FIELD ATTACHABLE G1 & G2

COUPLINGS

FIELD ATTACHABLE C5 COUPLINGS SURELOK AIR BRAKE COUPLINGS

OLIICK DISCONNECT COUPLERS NEW BALL VALVES ACCESSORIES

EQUIPMENT

AND PARTS

**C19** 

Coupling Selection - con't.

# **Coupling and Adapter End Style Nomenclature**

Gates couplings feature a meaningful description by combining end-style codes shown below that make thread end identification fast and easy. Always refer to Gates Crimp Data Charts when selecting hose and coupling combinations.

In the following example, the Gates description 12GS-12FJX90L identifies a GlobalSpiral<sup>™</sup> Female JIC Swivel 90° Bend Long Drop coupling for -12 (3/4") hose size and -12 (3/4") stem size.



| Description                        | Code     | Description                      |
|------------------------------------|----------|----------------------------------|
| Adapterless                        | LH       | Long Hex                         |
| Air Brake                          | LN       | Lock Nut                         |
| API Unions                         | Μ        | Male                             |
| Brass                              | MB       | Male Boss                        |
| British Bonded Seal                | MBAX     | Male Boss Adapterless Swivel     |
| Banjo                              | MBDS     | Metric Bonded Seal               |
| Bulkhead                           | MFA      | Male Flareless Assembly (Ermeto) |
| Block                              | MFG      | Male French GAZ                  |
| Bite Sleeve                        | MKB      | Metric Kobelco                   |
| British Standard Pipe Parallel     | MM       | Metric Male                      |
| British Standard Pipe Tapered      | MN       | Metric Nut                       |
| Caterpillar Flang                  | MPG      | Male Special Grease Fitting      |
| Clamping Collar                    | MPLN     | Male Pipe Long Nose              |
| DIN Heavy                          | MLSP     | Metric Light Stand Pipe          |
| DIN Light                          | MSP      | Metric Stand Pipe                |
| Female                             | NASP     | North American Stand Pipe        |
| Female Air Brake Swivel            | OR       | O-Ring                           |
| Female British Flat-Face O-Ring    | Р        | Pipe Thread (NPTF or NPSM)       |
| Female Braze-on Stem               | PL       | Press Lok®                       |
| Flat-Face                          | PT       | Port                             |
| Female French GAZ Swivel           | PWX      | Pressure Washer Swivel           |
| (Female Kobelco)                   | QLD      | Quick-Lok® Direct                |
| Female Flareless Nut               | QHD      | Quick-Lok® High                  |
| Flat-Face O-Ring                   | R        | Field Attachable                 |
| Female Flareless Sleeve            | S        | SAE (45° Flare)                  |
| Female Grease Thread               | SP       | Special                          |
| Female Komatsu Style Swivel        | SS       | Stainless Steel                  |
| Code 61 O-Ring Flange              | TS       | Tube Sleeve                      |
| Caterpillar Style O-Ring Flange    | TSN      | Tube Sleeve Nut                  |
| Code 62 O-Ring Flange Heavy        | Х        | Swivel                           |
| Flange O-Ring Special              | Z        | Parker Triple Thread             |
| Female SAE Tube                    | 22       | 22-1/2° Bent Tube Angle          |
| Hose Length Extender               | 30       | 30° Bent Tube Angle              |
| Hose Length Extender (Caterpillar) | 45       | 45° Bent Tube Angle              |
| Hose Mender                        | 60       | 60° Popt Tubo Apolo              |
| Hammer Union                       | 67       | 67 1/08 Dept Tube Angle          |
| Inverted Flare                     | ю/<br>00 | 0/-1/2 Bent Tube Angle           |
| JIC (37° Flare)                    | 90       | 90 Dent Tube Angle               |
| Japanese Industrial Standard       | 110      |                                  |
| Komatsu Style (Japanese 30° Seat)  | 135      | 135 Bent Tube Angle              |



# **Coupling Selection – continued**

# **Thread End Dash Sizes, Descriptions and Dimensions**

### **Coupling Dash Size and End Style**

Coupling dash size is a shorthand method of denoting the size of a particular end fitting (see Thread Chart).

- EXAMPLE: 12MP denotes a 3/4" male pipe thread end fitting. The corresponding thread description for a 3/4" pipe thread is 3/4 -14 NPTF solid male.
- EXAMPLE: 12FJX denotes a 3/4" female JIC swivel (37° seat) end fitting. The corresponding thread description for a 3/4" JIC thread is 1-1/16 12 JIC 37° flare swivel female.
- EXAMPLE: 12FL denotes a 3/4" SAE standard pressure (Code 61) flange fitting. This is the standard fitting description for a 3/4" SAE standard pressure flange.

### **Termination Drop Lengths**

Bent tube couplings carry a suffix designation that specifies the degree of bend and the length of the drop.

For example, a **12FJX90S** is a female JIC swivel with a 90 degree bend. The "S" designates an SAE J516 short drop length. The short and long drops are specified in SAE J516. Flat-face and metric couplings meet ISO-12151-1 drop length specifications. Medium drops are not specified and can vary from manufacturer to manufacturer.

- ${f S}$  Short Drop
- M Medium Drop
- L Long Drop
- XL Extra Long Drop

Special, non-industry standard drop lengths are designated with a numerical suffix instead of the S,M,L code. For example, a **12FJX90-075** designates a 75mm drop.

### SAE J516 Drop Length Specifications

JIC 37°, Code 61, Code 62

| Hose Size | Short Drop<br>(mm) | Long Drop<br>(mm) |
|-----------|--------------------|-------------------|
| -4        | 17.3               | 45.7              |
| -6        | 21.6               | 55.4              |
| -8        | 27.7               | 61.7              |
| -10       | 31.2               | 65.3              |
| -12       | 46.2               | 94.7              |
| -16       | 54.4               | 110.0             |

### ISO 12151-1 Drop Length Specifications Flat-Face O-Ring

| Hose Size | Short Drop<br>(mm) | Medium Drop<br>(mm) | Long Drop<br>(mm) |
|-----------|--------------------|---------------------|-------------------|
| -4        | 20.8               | 32.0                | 45.7              |
| -6        | 22.9               | 38.0                | 54.1              |
| -8        | 29.2               | 41.0                | 63.8              |
| -10       | 32.3               | 46.0                | 70.1              |
| -12       | 47.8               | 58.0                | 96.0              |
| -16       | 56.1               | 71.0                | 114.3             |
| -20       | 63.8               | 78.0                | 129.3             |
| -24       | 68.6               | 86.0                | 140.7             |
| -32       | 88.0               | 140.0               | 222.0             |

### **Thread End Catalog Descriptions**

Gates coupling ends shown on the following pages are accepted as industry standards. See detailed catalog listings for availability of specific hose/coupling combinations, detailed descriptions, thread end configurations such as swivels and bent tubes and special ends.

| HOSE/CPLG.<br>Selection                     |
|---------------------------------------------|
| GLOBALSPIRAL<br>Couplings                   |
| PCM/PCS<br>Ferrules                         |
| MEGACRIMP<br>Couplings                      |
| POWER<br>CRIMP<br>COUPLINGS                 |
| LOW<br>PRESSURE<br>COUPLINGS                |
| POLARSEAL<br>Couplings                      |
| C14<br>Couplings                            |
| PCTS<br>THERMO-<br>PLASTIC<br>COUPLINGS     |
| FIELD<br>ATTACHABLE<br>G1 & G2<br>COUPLINGS |
| FIELD<br>ATTACHABLE<br>C5<br>COUPLINGS      |
| SURELOK AIR<br>Brake<br>Couplings           |
| QUICK<br>Disconnect<br>Couplers             |
| NEW BALL<br>VALVES                          |
| ACCESSORIES                                 |
| EQUIPMENT<br>AND PARTS                      |
|                                             |

C20

EQUIPMENT





EQUIPMENT

HOSE/CPLG. Selection

GLOBALSPIRAL Couplings

PCM/PCS Ferrules

MEGACRIMP Couplings

POWER CRIMP COUPLINGS

LOW PRESSURE COUPLINGS

POLARSEAL COUPLINGS

C14 Couplings

PCTS THERMO-PLASTIC COUPLINGS

FIELD ATTACHABLE G1 & G2 COUPLINGS

FIELD Attachable C5 Couplings

SURELOK AIR Brake Couplings

QUICK Disconnect Couplers

NEW BALL Valves

ACCESSORIES

EQUIPMENT

Equipment And Parts **Sealing Types for Hydraulic Couplings** 

When identifying hydraulic couplings, it is important to identify the type of seal made. There are three major types of coupling interfaces used in hydraulics today: Thread Interface, O-Rings and Mated Angle or Mechanical Joint. These three interfaces have developed differently in different parts of the world. In the following pages, country of origin and the coupling styles found in each country are identified. Brief descriptions and dimensional data help identify your particular coupling style.

# Identifying couplings is as easy as 1-2-3!

### 1. Determine Seal Type.

- Thread Interference
  - O-Ring
  - Mated Angle or Mechanical Joint
  - Mated Angle with O-Ring

**Thread Interference.** A characteristic of this thread is that the male is thinner at the front than it is at the back. As the male is threaded into the female, the edges of the thread distort by flattening out. This distortion creates the seal.

**O-Ring.** The O-ring on the male being compressed against the corresponding female makes this seal. This type of seal is excellent for high-pressure applications. The threads pull the fitting against the port, trap the O-ring and flatten it to form a tight seal.

**Mated Angle or Mechanical Joint.** Different angles are used to create the seal. The seal takes place where the two angles meet and are wedged into one another. These can be cut with the angle either being inverted or standard. Standard seat couplings have the nose angle of the male on the outer surface of the coupling. Inverted seat couplings contain the nose angle of the male on the inside bore of the coupling.

**Mated Angle with O-Ring.** These couplings are a hybrid, which use both the mated angle and the O-ring to make the seal.

### 2. Visual Identification.

**Thread Interference.** These are the easiest because the only factor here is whether the termination is male or female. Couplings that use this seal are:



www.gates.com/hydraulics

Gates Corporation







EQUIPMENT

HOSE/CPLG. SELECTION

GLOBALSPIRAL COUPLINGS

PCM/PCS FERRULES

MEGACRIMP COUPLINGS

POWER CRIMP COUPLINGS

LOW PRESSURE COUPLINGS

POLARSEAL COUPLINGS

C14 COUPLINGS

PCTS THERMO-PLASTIC COUPLINGS

FIELD ATTACHABLE G1 & G2 COUPLINGS

FIELD ATTACHABLE C5 COUPLINGS

SURELOK AIR BRAKE COUPLINGS

OLIICK DISCONNECT COUPLERS

NEW BALL VALVES

ACCESSORIES

FOUIPMENT AND PARTS

C23



Center Lines Are Parallel Center Lines At An Angle Using the seat gauge, determine the angle of the seat, as illustrated. When the centerlineof the seat gauge extends parallel with the projected longitudinal axis of the coupling, then the angles of Righ Wrong the gauge and seat match. NOTE: Thread binding will occur when DIN 24° JIC 37 different thread configurations are used.

### 3. Measure Threads.

DO NOT mix thread configurations.

Because some couplings have very similar characteristics, the only way to determine the correct identification is by measuring the thread. Follow the procedure below when measuring coupling threads:

Read "In"



With the caliper measure the thread diameter of the largest point. (Outside diameter (O.D.) of male threads-Inside Diameter (I.D.) of female threads.)



Using the thread gauge, determine the number of threads per inch. Comparison of gauge and coupling threads against a lighted background will ensure an accurate reading.

Match the measurements taken above against those in the following tables that appear to be similar to the coupling under consideration.

Gates provides many useful tools to assist you in identifying the right coupling!



# **Coupling/Thread Identification Tools**

# **Hydraulic Coupling Templates**

### Industrial Advertising Number: 39549

These templates provide a fast and easy way to measure North American threads, International threads, flange ends, seat angles (37° and 45°) and hose I.D.

# **Stainless Steel Digital Caliper**

### Product Number: 7369-0322

Caliper features an easy-to-read LCD screen clearly displaying the crimp diameter digitally. Capable of four-way measurement: inside, outside, depth and step. Constructed of hardened stainless steel and comes in a handy, protective carrying case.

# International Thread Identification Kit

### Product Number: 7369-0319

A sturdy, attractive carrying case suitable for counter display and field sales calls. Contains male metric and BSP plugs for identifying thread size, pocket thread I.D. kit, and flow chart with step-by-step instructions. For female thread identification, simply couple with the mating male.

# Pocket Thread Identification Kit

### Product Number: 7369-4318

To properly identify the correct replacement couplings, the measuring tools shown here should be used.

### **Contents:**

Calipers Seat Gauges (English) Seat Gauges (Metric) Thread Gauges Thread I.D. Guide.



| EQUIPN                   | IENT          |  |
|--------------------------|---------------|--|
| HOSE/C<br>Select         | PLG.<br>Ton   |  |
| GLOBALS<br>COUPLIN       | spiral<br>Igs |  |
| PCM/P(<br>Ferrul         | CS<br>LES     |  |
| Megac<br>Coupli          | RIMP<br>NGS   |  |
| POWER<br>CRIMP<br>COUPLI | NGS           |  |
| LOW                      |               |  |



### POLARSEAL Couplings

C14 Couplings

PCTS THERMO-PLASTIC COUPLINGS

FIELD Attachable G1 & G2 Couplings

FIELD Attachable C5 Couplings

SURELOK AIR Brake Couplings

QUICK DISCONNECT COUPLERS

NEW BALL VALVES

ACCESSORIES

EQUIPMENT AND PARTS



The World's Most Trusted Name in Belts, Hose and Hydraulics.

www.gates.com/hydraulics

# **Thread Chart**

# For All Hose I.D.'s Except C5 Series, C14 and AC134a.

| Komatsu |         | MDH M16   | MDL M10X1.0 M12X1.5 M14X1.5 M16 | METRIC (mm) 8 10 12 14 1 | Copper/Nylon Air<br>Brake Thread 7/10-24 17/20 | Japanese Flare<br>Thread 1/8-28 1/4-19 3/8- | Japanese Pipe           Tapered Thread         1/6-28         1/6-19         3/6- | BSPT Thread 1/8-28 1/4-19 3/8- | BSPP Thread 1/8-28 1/4-19 3/8- | Code 62 Flange<br>Head O.D. | Code 61 Flange<br>Head O.D. | $\begin{array}{c} \text{Compression} \\ \text{Thread} & \$_{to-24} & \$_{to-24} & \imath_{to-24} & \imath_{z-24} & \$_{to-24} \\ \end{array}$ | Inverted Flare<br>Thread ¾-28 ¾-24 ¼-20 ‰ | Flat-Face Thread 9/16-18 11/16 | $\begin{array}{llllllllllllllllllllllllllllllllllll$ | SAE 45° Flare<br>Thread ¾re-24 ¾re-24 ¾re-20 ¾re-20 ⅔re- | JIC 37° Flare<br>Thread <sup>5</sup> / <sub>16</sub> -24 <sup>3</sup> / <sub>8</sub> -24 <sup>7</sup> / <sub>16</sub> -20 <sup>9</sup> / <sub>16</sub> - | NPSM Swivel           Thread         1/s-27         1/s-18         3/s- | <b>NPTF Pipe Thread</b> 1/6-27 1/4-18 3/6- | DASH SIZE 2 3 4 5 6 |
|---------|---------|-----------|---------------------------------|--------------------------|------------------------------------------------|---------------------------------------------|-----------------------------------------------------------------------------------|--------------------------------|--------------------------------|-----------------------------|-----------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------|--------------------------------|------------------------------------------------------|----------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------|--------------------------------------------|---------------------|
|         | M18X1.5 | 5 M18X1.5 | 5 M18X1.5                       | 18                       |                                                |                                             |                                                                                   |                                |                                |                             |                             | <sup>5</sup> /8-24                                                                                                                            | 11/16-18                                  |                                |                                                      | <sup>11</sup> / <sub>16</sub> —16                        |                                                                                                                                                          |                                                                         |                                            | 7                   |
| M20X1.5 |         | M20X1.5   |                                 | 20                       | 11/16-20                                       | <sup>1</sup> / <sub>2</sub> -14             | 1/2-14                                                                            | 1/2-14                         | 1/2-14                         | 1.25                        | 1.19                        | 11/16-20                                                                                                                                      | <sup>3/4-18</sup>                         | 13/16-16                       | 3/4-16                                               | 3/4-16                                                   | 3/4-16                                                                                                                                                   | 1/2-14                                                                  | 1/2-14                                     | œ                   |
|         | M22X1.5 |           | M22X1.5                         | 22                       | 13/16-18                                       | <sup>5</sup> /8-14                          | <sup>5</sup> /8-14                                                                | 5/8-14                         | 5/8-14                         |                             | 1.335                       | 13/16-18                                                                                                                                      | <sup>7</sup> /8-18                        | 1-14                           | <sup>7</sup> /8-14                                   | <sup>7</sup> /8-14                                       | <sup>7</sup> /8-14                                                                                                                                       |                                                                         |                                            | 10                  |
| M24X1.5 | M24X1.5 | M24X1.5   |                                 | 24                       | 1-18                                           | 3/4-14                                      | 3/4-14                                                                            | 3/4-14                         | 3/4-14                         | 1.62                        | 1.50                        | 1-18                                                                                                                                          | 11/16-16                                  | 13/16-12                       | 11/16-12                                             | 11/16-14                                                 | 11/16-12                                                                                                                                                 | 3/4-14                                                                  | 3/4-14                                     | 12                  |
|         |         |           | M26X1.5                         | 26                       |                                                |                                             |                                                                                   |                                |                                |                             |                             |                                                                                                                                               |                                           |                                | 13/16-12                                             |                                                          | 13/16-12                                                                                                                                                 |                                                                         |                                            | 14                  |
| M30X1.5 | M30X1.5 | M30X2.0   | M30X2.0                         | 30                       |                                                | 1-11                                        | 1-11                                                                              | 1-11                           | 1-11                           | 1.88                        | 1.75                        |                                                                                                                                               |                                           | 17/16-12                       | 15/16-12                                             |                                                          | 15/16-12                                                                                                                                                 | 1-111/2                                                                 | 1-111/2                                    | 16                  |
|         | M33X1.5 |           |                                 | ය                        |                                                | 11/4-11                                     | 11/4-11                                                                           | 11/4-11                        | 11/4-11                        | 2.12                        | 2.00                        |                                                                                                                                               |                                           | 111/16-12                      | 15/8-12                                              |                                                          | 15/8-12                                                                                                                                                  | 11/4-111/2                                                              | 11/4-111/2                                 | 20                  |
| M36X1.5 | M36X1.5 | M36X2.0   | M36X2.0                         | 36                       |                                                | 11/2-11                                     | 11/2-11                                                                           | 11/2-11                        | 11/2-11                        | 2.50                        | 2.38                        |                                                                                                                                               |                                           | 2-12                           | 17/8-12                                              |                                                          | 17/8-12                                                                                                                                                  | 11/2-111/2                                                              | 11/2-111/2                                 | 24                  |
|         | M42X1.5 | M42X2.0   |                                 | 42                       |                                                | 2-11                                        | 2-11                                                                              | 2-11                           | 2-11                           | 3.12                        | 2.81                        |                                                                                                                                               |                                           |                                | 21/2-12                                              |                                                          | 21/2-12                                                                                                                                                  | 2-111/2                                                                 | 2-111/2                                    | 32                  |
| M45X1.5 |         | M45X2.0   | M45X2.0                         | 45                       |                                                |                                             |                                                                                   |                                |                                |                             | 3.31                        |                                                                                                                                               |                                           |                                |                                                      |                                                          | 3-12                                                                                                                                                     |                                                                         | 21/2-8                                     | 40                  |
| M52X1.5 |         | M52X2.0   | M52X2.0                         | 52                       |                                                |                                             |                                                                                   |                                |                                |                             | 4.00                        |                                                                                                                                               |                                           |                                |                                                      |                                                          | 31/2-12                                                                                                                                                  |                                                                         | 3-8                                        | 48                  |

**Hose & Coupling Section** 

EQUIPMENT

STREET.

HOSE/CPLG. SELECTION

GLOBALSPIRAL COUPLINGS

PCM/PCS FERRULES

MEGACRIMP

COUPLINGS

POWER

CRIMP COUPLINGS

LOW PRESSURE COUPLINGS

POLARSEAL

COUPLINGS

COUPLINGS PCTS

C14

THERMO-PLASTIC COUPLINGS

FIELD ATTACHABLE G1 & G2 COUPLINGS

FIELD ATTACHABLE C5 COUPLINGS

SURELOK AIR BRAKE COUPLINGS

QUICK

DISCONNECT COUPLERS

NEW BALL VALVES

ACCESSORIES

EQUIPMENT AND PARTS





# **Coupling Identification**

There are five coupling systems generally used for hydraulic connections today. They are identified geographically or by country as: This section lists the origin and coupling style found in each country. Brief descriptions and dimensional data follows each coupling style.

North American British French German Japanese

# **North American Thread Types**

# **Iron Pipe Thread Abbreviations**

N National

National Pipe Tapered thread for Fuel is a dryseal

thread. It is used for both male and female ends.

The NPTF male will mate with the NPTF, NPSF,

The NPTF male has tapered threads and a 30° inverted

seat. The NPTF female has tapered threads and no seat.

The seal takes place by deformation of the threads. The

NPSM female has straight threads and a 30° inverted

The NPTF connector is similar to, but not interchange-

able with, the BSPT connector. The thread pitch is

different in most sizes. Also, the thread angle is 60° instead of the 55° angle found on BSPT threads.

**NPT Pipe Thread** 

Thread OD

NPTF or

NPSF

Solid Female

(FP)

30

I

Thread 0D

NPTF

Solid Male

(MP, MPLN)

seat. The seal takes place on the 30° seat.

- S Straight ThreadT Tapered Thread
- **F** Fuels **M** Mechanical Joint

P Pipe

or NPSM female.

NPTF

# **NPSF**

National Pipe Straight thread for Fuels is sometimes used for female ends and properly mates with the NPTF male end. However, SAE recommends the NPTF thread in preference to the NPSF for female ends.

# NPSM

National Pipe Straight thread for Mechanical Joint is used on the female swivel nut of iron pipe swivel adapters. The leak-resistant joint is not made by the sealing fit of threads, but by a tapered seat in the coupling end.

| Dash | Nominal     | No. Threads | Female<br>Thread | Male<br>Thread | Max. Torque<br>Recommendation for |
|------|-------------|-------------|------------------|----------------|-----------------------------------|
| 3120 | SIZE (III.) | hei men     | I.D. (In.)       | 0.D. (In.)     | Dry NPTF* (Ft. Lbs.)              |
| -2   | 1/8         | 27          | 23/64            | 13/32          | 20                                |
| -4   | 1/4         | 18          | 15/32            | 35/64          | 25                                |
| -6   | 3/8         | 18          | 19/32            | 43/64          | 35                                |
| -8   | 1/2         | 14          | 3/4              | 27/32          | 45                                |
| -12  | 3/4         | 14          | 61/64            | 1-1/16         | 55                                |
| -16  | 1           | 11-1/2      | 1-13/64          | 1-5/16         | 65                                |
| -20  | 1-1/4       | 11-1/2      | 1-17/32          | 1-43/64        | 80                                |
| -24  | 1-1/2       | 11-1/2      | 1-25/32          | 1-29/32        | 95                                |
| -32  | 2           | 11-1/2      | 2-1/4            | 2-3/8          | 120                               |

### \*NOTES:

- Torque values can vary considerably depending on thread condition. Use only enough torque to achieve adequate sealing.
- With female straight or parallel pipe threads (NPSM), maximum values are 50 percent of those listed in the table.
- 3. If thread sealant is used, maximum values shown should be decreased by 25 percent.

60

Thread ID

NPSM

Swivel Female

(FPX)

### www.gates.com/hydraulics

**C26** 

GLOBALSPIRAL COUPLINGS PCM/PCS FERRULES MEGACRIMP COUPLINGS POWER CRIMP COUPLINGS

HOSE/CPLG. SELECTION

low Pressure Couplings

POLARSEAL Couplings

C14 Couplings

PCTS THERMO-PLASTIC

COUPLINGS

FIELD Attachable

COUPLINGS

G1 & G2

FIELD Attachable C5 Couplings

SURELOK AIR BRAKE

COUPLINGS

QUICK DISCONNECT COUPLERS

NEW BALL VALVES

ACCESSORIES

EQUIPMENT

AND PARTS



HOSE/CPLG. SELECTION

GLOBALSPIRAL Couplings

PCM/PCS

FERRULES

MEGACRIMP COUPLINGS

POWER

CRIMP

LOW PRESSURE

C14

COUPLINGS

COUPLINGS

POLARSEAL

COUPLINGS

# **Hose & Coupling Section**

# **Coupling Identification**

# North American Thread Types (con't.)

# \*JIC (37° Flare)

The Society of Automotive Engineers (SAE) specifies a 37° angle flare or seat be used with high pressure hydraulic tubing. These are commonly called JIC couplings.

The JIC 37° flare male will mate with a JIC female only.\* The JIC male has straight threads and a 37° flare seat. The JIC female has straight threads and a 37° flare seat. The seal is made on the 37° flare seat.

Some sizes have the same threads as the SAE 45° flare. Carefully measure the seat angle to differentiate.

\*Note: Some C5, C5E and Lock-On couplings may have dual machined seats (both 37° and 45° seats).

### JIC 37° Flare



| Dash<br>Size |       | Throad      | Female     | Male       | Steel Torque |                 |  |  |
|--------------|-------|-------------|------------|------------|--------------|-----------------|--|--|
|              |       | Cino        | Thread     | Thread     | Recommenda   | tion (Ft. Lbs.) |  |  |
| Size         | (In.) | 5120        | I.D. (In.) | 0.D. (In.) | Min.         | Max.            |  |  |
| -2           | 1/8   | 5/16 – 24   | 17/64      | 5/16       | -            | -               |  |  |
| -3           | 3/16  | 3/8 – 24    | 21/64      | 3/8        | -            | -               |  |  |
| -4           | 1/4   | 7/16 – 20   | 25/64      | 7/16       | 10           | 11              |  |  |
| -5           | 5/16  | 1/2 – 20    | 29/64      | 1/2        | 13           | 15              |  |  |
| -6           | 3/8   | 9/16 – 18   | 1/2        | 9/16       | 17           | 19              |  |  |
| -8           | 1/2   | 3/4 – 16    | 11/16      | 3/4        | 34           | 38              |  |  |
| -10          | 5/8   | 7/8 – 14    | 13/16      | 7/8        | 50           | 56              |  |  |
| -12          | 3/4   | 1-1/16 – 12 | 31/32      | 1-1/16     | 70           | 78              |  |  |
| -14          | 7/8   | 1-3/16 – 12 | 1-7/64     | 1-3/16     | -            | -               |  |  |
| -16          | 1     | 1-5/16 – 12 | 1-15/64    | 1-5/16     | 94           | 104             |  |  |
| -20          | 1-1/4 | 1-5/8 – 12  | 1-35/64    | 1-5/8      | 124          | 138             |  |  |
| -24          | 1-1/2 | 1-7/8 – 12  | 1-51/64    | 1-7/8      | 156          | 173             |  |  |
| -32          | 2     | 2-1/2 - 12  | 2-27/64    | 2-1/2      | 219          | 243             |  |  |

# \*SAE (45° Flare)

A term usually applied to fittings having a 45° angle flare or seat. Soft copper tubing is generally used in such applications as it is easily flared to the 45° angle. These are for low-pressure applications—such as for fuel lines and refrigerant lines.

The SAE 45° flare male will mate with an SAE 45° flare female only or a dual seat JIC/SAE 45°.\*

The SAE male has straight threads and a 45° flare seat. The SAE female has straight threads and a 45° flare seat. The seal is made on the 45° flare seat.

Some sizes have the same threads as the SAE 37° flare.

Carefully measure the seat angle to differentiate.

\***Note:** Some C5, C5E and Lock-On couplings may have dual machined seats (both 37° and 45° seats).

### SAE 45° Flare



SAE 45° Flare Male (MS)

www.gates.com/hydraulics

SAE 45° Flare Swivel Female (FSX)

Thread ID

| Dash<br>Size | Nominal<br>Size (In.) | Thread Size | Female<br>Thread | Male<br>Thread | Steel<br>Recomn<br>(Ft. | Torque<br>nendation<br>Lbs.) |
|--------------|-----------------------|-------------|------------------|----------------|-------------------------|------------------------------|
|              |                       |             | I.D. (In.)       | 0.D. (In.)     | Min.                    | Max.                         |
| -2           | 1/8                   | 5/16 - 24   | 17/64            | 5/16           | -                       | -                            |
| -3           | 3/16                  | 3/8 – 24    | 21/64            | 3/8            | -                       | -                            |
| -4           | 1/4                   | 7/16 – 20   | 25/64            | 7/16           | 10                      | 11                           |
| -5           | 5/16                  | 1/2 - 20    | 29/64            | 1/2            | 13                      | 15                           |
| -6           | 3/8                   | 5/8 – 18    | 9/16             | 5/8            | 17                      | 19                           |
| -7           | 7/16                  | 11/16 – 16  | 5/8              | 11/16          | -                       | -                            |
| -8           | 1/2                   | 3/4 – 16    | 11/16            | 3/4            | 34                      | 38                           |
| -10          | 5/8                   | 7/8 – 14    | 13/16            | 7/8            | 50                      | 56                           |
| -12          | 3/4                   | 1-1/16 – 14 | 63/64            | 1-1/16         | 70                      | 78                           |

### **Special Power Steering Thread End**

| Dash Size | Nominal Size | Thread Size | Female Thread | Male Thread |  |
|-----------|--------------|-------------|---------------|-------------|--|
|           | (In.)        |             | I.D. (In.)    | 0.D. (In.)  |  |
| -6        | 3/8          | 11/16 – 18  | 5/8           | 11/16       |  |

I

PCTS THERMO-PLASTIC COUPLINGS

FIELD Attachable G1 & G2 Couplings

FIELD ATTACHABLE C5 COUPLINGS

SURELOK AIR Brake Couplings

QUICK DISCONNECT COUPLERS

NEW BALL VALVES

ACCESSORIES

Equipment And Parts





# **Coupling Identification**

# North American Thread Types (con't.)

# **O-Ring Boss**

The O-ring boss male will mate with an O-ring boss female only. The female is generally found on ports.

The male has straight threads, a sealing face and an O-ring. The female has straight threads and a sealing face. The seal is made at the O-ring on the male and the sealing face on the female.

|              |                       |                | Female     | Mala       |            |       | Steel Torque Recommendations (F |                                                                    | ions (Ft. Lbs) |                            |
|--------------|-----------------------|----------------|------------|------------|------------|-------|---------------------------------|--------------------------------------------------------------------|----------------|----------------------------|
| Dash<br>Size | Nominal<br>Size (In.) | Thread<br>Size | Thread     | Thread     | 0-R        | ling  | Below<br>Working                | elow 4,000 psi Above 4,000 psi<br>orking Pressure Working Pressure |                | e 4,000 psi<br>ng Pressure |
|              |                       |                | I.D. (In.) | 0.D. (In.) | I.D. (In.) | DESCR | Min.                            | Max.                                                               | Min.           | Max.                       |
| -2           | 1/8                   | 5/16 – 24      | 17/64      | 5/16       | 0.239      | -     | -                               | -                                                                  | -              | -                          |
| -3           | 3/16                  | 3/8 – 24       | 21/64      | 3/8        | 0.301      | 30R   | -                               | -                                                                  | 8              | 10                         |
| -4           | 1/4                   | 7/16 – 20      | 25/64      | 7/16       | 0.351      | 40R   | 14                              | 16                                                                 | 14             | 16                         |
| -5           | 5/16                  | 1/2 – 20       | 29/64      | 1/2        | 0.414      | 50R   | -                               | -                                                                  | 18             | 20                         |
| -6           | 3/8                   | 9/16 – 18      | 1/2        | 9/16       | 0.468      | 60R   | 24                              | 26                                                                 | 24             | 26                         |
| -8           | 1/2                   | 3/4 – 16       | 11/16      | 3/4        | 0.644      | 80R   | 37                              | 44                                                                 | 50             | 60                         |
| -10          | 5/8                   | 7/8 – 14       | 13/16      | 7/8        | 0.755      | 100R  | 50                              | 60                                                                 | 72             | 80                         |
| -12          | 3/4                   | 1-1/16 – 12    | 31/32      | 1-1/16     | 0.924      | 120R  | 75                              | 83                                                                 | 125            | 135                        |
| -14          | 7/8                   | 1-3/16 – 12    | 1-7/64     | 1-3/16     | 1.048      | 140R  | -                               | -                                                                  | 160            | 180                        |
| -16          | 1                     | 1-5/16 – 12    | 1-15/64    | 1-5/16     | 1.171      | 160R  | 111                             | 125                                                                | 200            | 220                        |
| -20          | 1-1/4                 | 1-5/8 – 12     | 1-35/64    | 1-5/8      | 1.475      | 200R  | 133                             | 152                                                                | 210            | 280                        |
| -24          | 1-1/2                 | 1-7/8 – 12     | 1-51/64    | 1-7/8      | 1.720      | -     | 156                             | 184                                                                | 270            | 360                        |
| -32          | 2                     | 2-1/2 – 12     | 2-27/64    | 2-1/2      | 2.337      | -     | -                               | -                                                                  | -              | -                          |

### SAE Straight Thread O-Ring Boss



# Gates Adapterless – MBAX

The Gates Adapterless coupling is designed for use in OEM assembly line applications. It eliminates the need for an adapter by directly connecting into the port, which reduces the number of possible leak points and reduces installation labor. It allows easy installation and eliminates the troubles of alignment on bent tube assemblies. It eliminates the performance limitations of the traditional male swivel. A jam nut locks the coupling into place.

Assemblies using the Gates Adapterless coupling can be serviced by replacing the assembly with an MB adapter in the port and a standard end termination (for example, an MB-MJ adapter and FJX couplings).

WARNING: The tightening of the jam nut is absolutely critical to performance so that the Adapterless coupling does not become a "live swivel". A live swiveling condition can cause wearing of the internal seals and result in leaks.

The Gates Adapterless coupling uses SAE O-Ring Boss threads. See the table above. The installation torque values are the same as SAE O-Ring Boss.



Swivel Nut

| HOSE/CPLG.<br>Selection                     |
|---------------------------------------------|
| GLOBALSPIRAL<br>Couplings                   |
| PCM/PCS<br>FERRULES                         |
| MEGACRIMP<br>Couplings                      |
| Power<br>Crimp<br>Couplings                 |
| LOW<br>PRESSURE<br>COUPLINGS                |
| POLARSEAL<br>Couplings                      |
| C14<br>Couplings                            |
| PCTS<br>THERMO-<br>PLASTIC<br>COUPLINGS     |
| FIELD<br>ATTACHABLE<br>G1 & G2<br>COUPLINGS |
| FIELD<br>ATTACHABLE<br>C5<br>COUPLINGS      |
| SURELOK AIR<br>BRAKE<br>COUPLINGS           |
| QUICK<br>Disconnect<br>Couplers             |
| NEW BALL<br>VALVES                          |
| ACCESSORIES                                 |
| EQUIPMENT<br>AND PARTS                      |





EQUIPMENT

HOSE/CPLG. Selection

GLOBALSPIRAL Couplings

PCM/PCS Ferrules

MEGACRIMP Couplings

POWER CRIMP COUPLINGS

LOW PRESSURE COUPLINGS

POLARSEAL COUPLINGS

C14 COUPLINGS

PCTS THERMO-PLASTIC COUPLINGS

FIELD Attachable G1 & G2 Couplings

FIELD ATTACHABLE C5 COUPLINGS

SURELOK AIR Brake Couplings

QUICK Disconnect Couplers

NEW BALL Valves

ACCESSORIES

EQUIPMENT AND PARTS



# North American Thread Types (con't.)

# O-Ring Flange—SAE J518

The SAE Code 61 and Code 62 4-bolt split flange is used worldwide, usually as a connection on pumps and motors. There are three exceptions.

- 1. The -10 size, which is common outside of North America, is not an SAE standard size (generally found on Komatsu equipment).
- 2. Caterpillar flanges, which are the same flange O.D. as SAE Code 62, have a thicker flange head ("C" dimension in Table).

3. Poclain flanges, which are completely different from

SAE flanges.

### SAE Code 61 and Code 62



Flange Head (FL/ FLH, FLC)

4-Bolt Split Flange Bolt Hose Dimensions

В

| Dach | Nominal              | Code 61 (FL)         |            |            | Code 62 (FLH) |                      |            | Caterpillar Code 62 (FLC) |            |                      |            |            |            |
|------|----------------------|----------------------|------------|------------|---------------|----------------------|------------|---------------------------|------------|----------------------|------------|------------|------------|
| Size | Flange<br>Size (In.) | Flange<br>O.D. (In.) | A<br>(In.) | B<br>(In.) | C<br>(In.)    | Flange<br>O.D. (In.) | A<br>(In.) | B<br>(In.)                | C<br>(In.) | Flange<br>O.D. (In.) | A<br>(In.) | B<br>(In.) | C<br>(In.) |
| -8   | 1/2                  | 1.188                | .688       | 1.500      | .265          | 1.250                | .718       | 1.594                     | .305       | -                    | -          | -          | -          |
| -10  | 5/8                  | 1.345                | -          | _          | .265          | -                    | -          | -                         | -          | -                    | -          | -          | _          |
| -12  | 3/4                  | 1.500                | .875       | 1.875      | .265          | 1.625                | .937       | 2.000                     | .345       | 1.625                | .938       | 2.000      | .560       |
| -16  | 1                    | 1.750                | 1.031      | 2.062      | .315          | 1.875                | 1.093      | 2.250                     | .375       | 1.875                | 1.094      | 2.250      | .560       |
| -20  | 1-1/4                | 2.000                | 1.188      | 2.312      | .315          | 2.125                | 1.250      | 2.625                     | .405       | 2.125                | 1.250      | 2.625      | .560       |
| -24  | 1-1/2                | 2.375                | 1.406      | 2.750      | .315          | 2.500                | 1.437      | 3.125                     | .495       | 2.500                | 1.438      | 3.125      | .560       |
| -32  | 2                    | 2.812                | 1.688      | 3.062      | .375          | 3.125                | 1.750      | 3.812                     | .495       | 3.125                | 1.750      | 3.812      | .560       |
| -40  | 2-1/2                | 3.312                | 2.000      | 3.500      | .375          | -                    | -          | _                         | -          | -                    | -          | _          | -          |
| -48  | 3                    | 4.000                | 2.438      | 4.188      | .375          | -                    | _          | -                         | _          | -                    | -          | -          | _          |
| -56  | 3-1/2                | 4.500                | 2.750      | 4.750      | .422          | -                    | -          | -                         | -          | -                    | -          | -          | -          |
| -64  | 4                    | 5.000                | 3.062      | 5.125      | .442          | -                    | -          | -                         | -          | -                    | -          | -          | -          |
| -80  | 5                    | 6.000                | 3.625      | 6.000      | .442          | _                    | _          | _                         | -          | -                    | -          | _          | _          |

# O-Ring Face Seal (ORFS)—SAE J1453

A seal is made when the O-ring in the male contacts the flat face on the female. Couplings are intended for hydraulic systems where elastomeric seals are acceptable to overcome leakage and leak resistance is crucial.

The solid male O-ring face seal fitting will mate with a swivel female O-ring face seal SAE J1453 fitting only.

An O-ring rests in the O-ring groove in the male.





Male Flat-Face O-Ring (MFFOR)



Female Flat-Face O-Ring Swivel (FFORX)

|              | Nominal       |                | Female Thread | Male Thread | 0-Ring |
|--------------|---------------|----------------|---------------|-------------|--------|
| Dash<br>Size | Size<br>(In.) | Thread<br>Size | I.D. (In.)    | 0.D. (In.)  | Size   |
| -4           | 1/4           | 9/16 – 18      | 1/2           | 9/16        | -011   |
| -6           | 3/8           | 11/16 – 16     | 5/8           | 11/16       | -012   |
| -8           | 1/2           | 13/16 – 16     | 3/4           | 13/16       | -014   |
| -10          | 5/8           | 1 – 14         | 15/16         | 1           | -016   |
| -12          | 3/4           | 1-3/16 – 12    | 1-1/8         | 1-3/16      | -018   |
| -16          | 1             | 1-7/16 – 12    | 1-11/32       | 1-7/16      | -021   |
| -20          | 1-1/4         | 1-11/16 – 12   | 1-19/32       | 1-11/16     | -025   |
| -24          | 1-1/2         | 2 – 12         | 1-29/32       | 2           | -029   |







EQUIPMENT

HOSE/CPLG. SELECTION

GLOBALSPIRAL

COUPLINGS

PCM/PCS FERRULES

# **Coupling Identification**

# North American Thread Types (con't.) **Flareless Tube**

The flareless solid male will mate with a female flareless nut and compression sleeve only.

The male has straight threads and a 24° seat. The female has straight threads and has a compression sleeve for a sealing surface. The seal is made between the compression sleeve and the 24° seat on the male, and between the compression sleeve and the tubing on the female.



|              | Tube          | Nominal       |               | Female Thread | Male Thread |
|--------------|---------------|---------------|---------------|---------------|-------------|
| Dash<br>Size | Size<br>(In.) | Size<br>(In.) | Thead<br>Size | I.D. (In.)    | 0.D. (In.)  |
| -2           | 1/8           | 5/16          | 5/16 – 24     | 17/64         | 5/16        |
| -3           | 3/16          | 3/8           | 3/8 – 24      | 21/64         | 3/8         |
| -4           | 1/4           | 7/16          | 7/16 – 20     | 25/64         | 7/16        |
| -5           | 5/16          | 1/2           | 1/2 – 20      | 29/64         | 1/2         |
| -6           | 3/8           | 9/16          | 9/16 – 18     | 1/2           | 9/16        |
| -8           | 1/2           | 3/4           | 3/4 – 16      | 11/16         | 3/4         |
| -10          | 5/8           | 7/8           | 7/8 – 14      | 13/16         | 7/8         |
| -12          | 3/4           | 1-1/16        | 1-1/16 – 12   | 31/32         | 1-1/16      |
| -14          | 7/8           | 1-3/16        | 1-3/16 – 12   | 1-7/64        | 1-3/16      |
| -16          | 1             | 1-5/16        | 1-5/16 – 12   | 1-15/64       | 1-5/16      |
| -20          | 1-1/4         | 1-5/8         | 1-5/8 – 12    | 1-35/64       | 1-5/8       |
| -24          | 1-1/2         | 1-7/8         | 1-7/8 – 12    | 1-51/64       | 1-7/8       |
| -32          | 2             | 2-1/2         | 2-1/2 – 12    | 2-27/64       | 2-1/2       |

**Dash Size** 

-4

-6

-8

-12

-16

# North American Stand Pipe (NASP)

A stand pipe assembly is comprised of three components attached to a male fitting. The components are a Stand Pipe Tube, Bite Sleeve and Nut. The Nut is placed over the Stand Pipe, followed by the Bite Sleeve (see illustration below). The Bite Sleeve and Stand Pipe are selected on the basis of tube O.D. required.





# **SAE Inverted Flare**

The SAE 45° inverted flare male will mate with an SAE 42° inverted flare female only.

The male has straight threads and a 45° inverted flare. The female has straight threads and a 42° inverted flare. The seal is made on the 45° flare seat on the male and the 42° flare seat on the female.







| SAE Inverted Flare |  |
|--------------------|--|
| Swivel Male (MIX)  |  |
| 2                  |  |

**SAE Inverted Flare** Solid Female

| Dash | Nominal    | Thread      | Female Thread | Male Thread |
|------|------------|-------------|---------------|-------------|
| Size | Size (In.) | Size        | I.D. (In.)    | 0.D. (In.)  |
| -2   | 1/8        | 5/16 – 28   | 9/32          | 5/16        |
| -3   | 3/16       | 3/8 – 24    | 21/64         | 3/8         |
| -4   | 1/4        | 7/16 – 24   | 25/64         | 7/16        |
| -5   | 5/16       | 1/2 – 20    | 29/64         | 1/2         |
| -6   | 3/8        | 5/8 – 18    | 37/64         | 5/8         |
| -7   | 7/16       | 11/16 – 18  | 5/8           | 11/16       |
| -8   | 1/2        | 3/4 – 18    | 45/64         | 3/4         |
| -10  | 5/8        | 7/8 – 18    | 13/16         | 7/8         |
| -12  | 3/4        | 1-1/16 – 16 | 1             | 1-1/16      |

|          |          |        |             | 1 |                                        |
|----------|----------|--------|-------------|---|----------------------------------------|
| - 18     | 1/2      | 2      | 9/16        | ] | MEGACKIMP<br>COUPLINGS                 |
| 16       | 11/16    |        | 3/4         |   |                                        |
| 14       | 13/16    |        | 7/8         |   |                                        |
| - 12     | 31/3     | 32     | 1-1/16      | ] | POWER                                  |
| - 12     | 1-7/     | 64     | 1-3/16      |   |                                        |
| - 12     | 1-15/    | 64     | 1-5/16      |   | COUPLINGS                              |
| - 12     | 1-35/    | ′64    | 1-5/8       | ] |                                        |
| - 12     | 1-51/    | 64     | 1-7/8       |   | LOW                                    |
| - 12     | 2-27/    | ′64    | 2-1/2       |   | PRESSURE                               |
| ·        |          |        |             | - | COUPLINGS                              |
|          |          |        |             |   | POLARSEAL<br>Couplings                 |
|          |          |        |             |   | C14<br>Couplings                       |
| Tube 0.D | ). (In.) | Tube L | ength (In.) |   | PCTS<br>Thermo-<br>Plastic             |
| 0.20     | 9<br>8   |        | 1.88        |   | COUPLINGS                              |
| 0.50     | <u> </u> | -      | 1.00        |   |                                        |
| 0.00     | 5        | -      | 1.16        |   | FIELD                                  |
| 1.00     | 0        | -      | 1 12        |   | ATTACHABLE                             |
|          | 0        | 1      |             |   | G1 & G2<br>COUPLINGS                   |
|          |          |        |             |   | FIELD<br>ATTACHABLE<br>C5<br>COUPLINGS |
|          |          |        |             |   | SURELOK AIR<br>Brake<br>Couplings      |
| le Thre  | ad       | Male ' | Thread      | 1 | QUICK                                  |
| D. (In.) |          | 0.D.   | (In.)       | • |                                        |
| 9/32     |          | 5/     | 16          | 1 | GOUFLENS                               |
| 21/64    |          | ر<br>ر | /8          | 1 |                                        |
|          |          | . 1    |             |   |                                        |

NEW BALL VALVES

| ACCESSORIES |  |
|-------------|--|
|             |  |

EQUIPMENT AND PARTS

The World's Most Trusted Name in Belts, Hose and Hydraulics.

www.gates.com/hydraulics



EQUIPMENT

HOSE/CPLG. SELECTION

GLOBALSPIRAL

COUPLINGS

COUPLINGS

POWER

CRIMP COUPLINGS

LOW PRESSURE COUPLINGS

C14 COUPLINGS

PCTS THERMO-PLASTIC

FIELD ATTACHABLE G1 & G2

FIELD ATTACHABLE C5

COUPLINGS

COUPLINGS

COUPLINGS

BRAKE

OLIICK DISCONNECT

COUPLERS

NEW BALL

ACCESSORIES

FOUIPMENT

AND PARTS

VALVES

POLARSEAL COUPLINGS

# **Hose & Coupling Section**

# **Coupling Identification**

# **Air Brake Fittings**

Female air brake swivels are designed to work exclusively with a male air brake adapter. Federal law requires only this combination to be used on air brake lines from the valve to the air brake

diaphram chamber. PCM/PCS

FERRULES The male has straight threads and an inverted seat. The female has straight threads and a corresponding inverted flare. The seal is made on the flare seats of both the male and female. MEGACRIMP





| Dash<br>Size | Thread<br>Size | Female Thread<br>I.D. (In.) | Male Thread<br>O.D. (In.) |
|--------------|----------------|-----------------------------|---------------------------|
| -6           | 3/4 – 20       | 23/32                       | 3/4                       |
| -8           | 7/8 – 20       | 27/32                       | 7/8                       |

Male Air Brake

Female Air Brake Swivel

# **Grease Fittings**

### **Special Male Grease Fitting**





### **Special Female Grease Fitting**



1/2-27 Tapered Thread

# 1/8-27 Pipe Thread

# **Parker Triple Thread Flare Fittings**

### **Parker Triple Thread Flare Fittings**





|              | Nominal       |                | Female Thread | Male Thread |
|--------------|---------------|----------------|---------------|-------------|
| Dash<br>Size | Size<br>(In.) | Thread<br>Size | I.D. (ln.)    | O.D. (ln.)  |
| -16          | 1-5/16        | 1-5/16 – 14    | 1-1/4         | 1-5/16      |

Swivel Female (FZX)

Solid Male (MZ)

### SURELOK AIR **Press-Lok® Connectors** COUPLINGS

Press-Lok style connectors are found on mining equipment worldwide.

The seal is made when the O-ring on the male contacts the inside surface of the female. The two connectors are held together with a staple.

### **Press-Lok Connectors**



Male Press-Lok Connectors

| Dash<br>Size | Nominal<br>Size<br>(In.) | Female<br>I.D.<br>(In.) | Male<br>O.D.<br>(In.) |
|--------------|--------------------------|-------------------------|-----------------------|
| -4           | 1/4                      | .39                     | .40                   |
| -6           | 3/8                      | .55                     | .56                   |
| -8           | 1/2                      | .70                     | .71                   |
| -12          | 3/4                      | .94                     | .95                   |
| -16          | 1                        | 1.22                    | 1.23                  |
| -20          | 1-1/4                    | 1.49                    | 1.50                  |

For more information and specifications on these couplings, please see the Gates Mining Products Catalog #99993 or visit www.gates.com/mining.

www.gates.com/hydraulics

Female Press-Lok Connectors

⊕

I.D.

Staple Holes





HOSE/CPLG. SELECTION

GLOBALSPIRAL

COUPLINGS

PCM/PCS FERRULES

MEGACRIMP COUPLINGS

POWER CRIMP

LOW

COUPLINGS

PRESSURE

COUPLINGS

POLARSEAL

COUPLINGS

C14 COUPLINGS

PCTS

FIELD

G1 & G2

COUPLINGS

THERMO-PLASTIC

COUPLINGS

ATTACHABLE

# **Coupling Identification**

# **Foreign Thread Types**

# **Identifying Foreign Couplings**

If you can identify the country of origin of the equipment you are working with, it is easy to identify the coupling style. Simply find the appropriate country in the following pages and locate the particular coupling in the table that follows.

# **British**

It is a common misconception that all foreign threads are metric. This is not always the case. There are two common thread forms: Metric and Whitworth (BSP). The country of origin and the proper nomenclature for each is listed below.

# **British Standard Pipe** Parallel

Popular couplings have British Standard Pipe (BSP) threads, also known as Whitworth threads. These can be parallel threads (BSPP) with a 30° inverted flare or tapered threads (BSPT), with a 30° inverted flare. Port connections are usually made with BSPP threads and a soft metal cutting ring for sealing.

The BSPP (parallel) male will mate with a BSPOR (parallel) female or a female port.

The BSPP male has straight threads and a 30° seat. The BSPOR female has straight threads, a 30° seat, and O-ring. The female port has straight threads and a spotface. The seal on the port is made with an O-ring or soft metal washer on the male.

The BSPP (parallel) connector is similar to, but not interchangeable with, the NPSM connector. The thread pitch is different in most sizes, and the thread angle is 55° instead of the 60° angle found on NPSM threads.

**British Standard Pipe** 

The BSPT (tapered) male will mate with a BSPT

The BSPT male has tapered threads. When mat-

BSPOR (parallel) female port, the seal is made on

ing with either the BSPT (tapered) female or the

The BSPT connector is similar to, but not inter-

pitch is different in most cases, and the thread

angle is 55° instead of the 60° angle found on

changeable with, the NPTF connector. The thread

(tapered) female, or a BSPOR (parallel) female.

| Dash<br>Size | Nominal<br>Size (In.) | Thread<br>Size | Female<br>Parallel<br>Thread | Male<br>Parallel<br>Thread | To<br>Recomr<br>(Ft. | rque<br>nendation<br>Lbs.) |
|--------------|-----------------------|----------------|------------------------------|----------------------------|----------------------|----------------------------|
|              |                       |                | I.D. (In.)                   | 0.D. (In.)                 | Min.                 | Max.                       |
| -2           | 1/8                   | 1/8 – 28       | 11/32                        | 3/8                        | 7                    | 9                          |
| -4           | 1/4                   | 1/4 – 19       | 15/32                        | 17/32                      | 11                   | 18                         |
| -6           | 3/8                   | 3/8 – 19       | 19/32                        | 21/32                      | 19                   | 28                         |
| -8           | 1/2                   | 1/2 – 14       | 3/4                          | 13/16                      | 30                   | 36                         |
| -10          | 5/8                   | 5/8 – 14       | 13/16                        | 29/32                      | 37                   | 44                         |
| -12          | 3/4                   | 3/4 – 14       | 31/32                        | 1-1/32                     | 50                   | 60                         |
| -16          | 1                     | 1 – 11         | 1-7/32                       | 1-11/32                    | 79                   | 95                         |
| -20          | 1-1/4                 | 1-1/4 - 11     | 1-17/32                      | 1-21/32                    | 127                  | 152                        |
| -24          | 1-1/2                 | 1-1/2 - 11     | 1-25/32                      | 1-7/8                      | 167                  | 190                        |
| -32          | 2                     | 2 – 11         | 2-7/32                       | 2-11/32                    | 262                  | 314                        |

### **British Standard Pipe Parallel (BSPOR)**

(FBSPORX)

Female

Parallel

Thread

I.D. (In.)

11/32

15/32

19/32

3/4

13/16

31/32

1 - 7/32

1-17/32

1-25/32

2-7/32 2-11/32

Male

Parallel

Thread

0.D. (In.)

3/8

17/32

21/32

13/16

29/32

1-1/32

1-11/32

1-21/32

1-7/8

**British Standard Pipe Tapered (BSPT)** 

Thread I.D.



Thread

Size

1/8 - 28

1/4 – 19

3/8 - 19

1/2 - 14

5/8 – 14

3/4 - 14

1 – 11

1-1/4 - 11

1-1/2 - 11

2 – 11

Thread

ΟD



**Torque Recommendation** 

(Ft. Lbs.)

Port

Max.

9

18

28

36

44

60

95

152

190

314

BSPT

Female

(FBSPT)

**BSPP Male** (MBSPP)

Nominal

Size

(In.)

1/8

1/4

3/8

1/2

5/8

3/4

1

1-1/4

1-1/2

2

Dash

Size

-2

-4

-6

-8

-10

-12

-16

-20

-24

-32

**BSPOR Female BSPOR Female** 

Min.

7

11

19

30

37

50

79

127

167

262

| FIELD<br>ATTACHABLE<br>C5<br>COUPLINGS |
|----------------------------------------|
| SURELOK AIR<br>Brake<br>Couplings      |
| QUICK<br>DISCONNECT<br>COUPLERS        |
| NEW BALL<br>VALVES                     |
| ACCESSORIES                            |
| EQUIPMENT<br>AND PARTS                 |

NPTF threads.

Tapered

the threads.

The World's Most Trusted Name in Belts, Hose and Hydraulics.

**BSPT** 

Male

(MBSPT)

www.gates.com/hydraulics





EQUIPMENT

HOSE/CPLG. Selection

GLOBALSPIRAL Couplings

PCM/PCS Ferrules

MEGACRIMP Couplings

Power Crimp Couplings

LOW PRESSURE COUPLINGS

POLARSEAL Couplings

C14 Couplings

PCTS THERMO-PLASTIC COUPLINGS

FIELD ATTACHABLE G1 & G2 COUPLINGS

FIELD ATTACHABLE C5 COUPLINGS

SURELOK AIR Brake Couplings

QUICK DISCONNECT COUPLERS

NEW BALL VALVES

ACCESSORIES

EQUIPMENT AND PARTS

# **Coupling Identification**

# Foreign Thread Types – British (con't.)

# **British Flat-Face Seal**

A seal is made when the O-ring in the male contacts the flat face on the female. These couplings are intended for hydraulic systems where elastomeric seals are acceptable to overcome leakage and leak resistance is crucial.

The solid male British O-ring face seal fitting will mate with a swivel female British O-ring face seal fitting only. An O-ring rests in the O-ring groove in the male.

| Dash<br>Size | Nominal<br>Size (In.) | Thread<br>Size | Female<br>Parallel<br>Thread | Male<br>Parallel<br>Thread | Torque<br>Recommendatio<br>(Ft. Lbs.) |      |
|--------------|-----------------------|----------------|------------------------------|----------------------------|---------------------------------------|------|
|              |                       |                | I.D. (In.)                   | 0.D. (ln.)                 | Min.                                  | Max. |
| -6           | 3/8                   | 3/8-19         | 19/32                        | 21/32                      | 18                                    | 20   |
| -8           | 1/2                   | 1/2-14         | 3/4                          | 13/16                      | 32                                    | 40   |
| -12          | 3/4                   | 3/4-14         | 31/32                        | 1 1/32                     | 65                                    | 80   |





-Thread ID

Male British Flat-Face (MBFF)



# French

Popular couplings are French GAZ. These have a 24° seat and metric threads. These are similar to German DIN couplings, but the threads are different in some sizes. Although both are metric threads, the French use fine threads in all sizes and German DIN couplings use coarse threads in larger sizes. Most port connections are flange connections. French flanges are different than SAE—they have a lip that protrudes from the flange face. These are called Poclain-style flanges.

# GAZ 24°

The French Metric (GAZ) male will mate with the female 24° cone or the female tube fitting.

The male has a 24° seat and straight metric threads. The female has a 24° seat or a tubing sleeve and straight metric threads and is interchangeable with female Kobelco.

When measuring the flare angle with the seat angle gauge, use the 12° gauge. The seat angle gauge measures the angle from the connector centerline.

# French Metric (GAZ)



Male 24° Cone

Female 24° Cone





Female Tube Fitting

www.gates.com/hydraulics

Gates Corporation



# **Coupling Identification**

# Foreign Thread Types – French (con't.)

# GAZ Poclain 24° Flange

The Poclain (French GAZ) 24° high pressure flange is usually found on Poclain equipment.

The male flange will mate with a female flange or port. The seal is made on the 24° seat.



### Poclain (French GAZ)





### \_\_\_\_\_

# **German DIN (Deutsche Industrial Norme)**

Popular couplings are German DIN (Deutsche Industrial Norme). A coupling referred to as "metric" usually means a DIN coupling.

# DIN 24° Cone

The DIN 24° cone male will mate with any of the females shown.

The male has a 24° seat, straight metric threads, and a recessed counterbore which matches the tube O.D. of the coupling used with it. The mating female is a 24° cone with O-ring, a metric tube fitting or a universal 24° and 60° cone.

There is a light and heavy series DIN coupling. Proper identification is made by measuring both the thread size and the tube O.D. (The heavy series has a smaller tube O.D. but a thicker wall section than the light.)

When measuring the flare angle with the seat angle gauge, use the 12° gauge. The seat angle gauge measures the angle from the connector centerline.

| Metric  | Female<br>Thread | Male<br>Thread | Tube O.D.            |                      | Torque<br>Recommendation (Ft. Lbs.) |      |
|---------|------------------|----------------|----------------------|----------------------|-------------------------------------|------|
| Size    | I.D. (mm)        | 0.D. (mm)      | Light Series<br>(mm) | Heavy Series<br>(mm) | Min.                                | Max. |
| M12x1.5 | 10.5             | 12.0           | 6                    | —                    | 7                                   | 15   |
| M14x1.5 | 12.5             | 14.0           | 8                    | —                    | 15                                  | 26   |
| M16x1.5 | 14.5             | 16.0           | 10                   | 8                    | 18                                  | 30   |
| M18x1.5 | 16.5             | 18.0           | 12                   | 10                   | 22                                  | 33   |
| M20x1.5 | 18.5             | 20.0           | 14                   | 12                   | 26                                  | 37   |
| M22x1.5 | 20.5             | 22.0           | 15                   | 14                   | 30                                  | 52   |
| M24x1.5 | 22.5             | 24.0           | —                    | 16                   | 30                                  | 52   |
| M26x1.5 | 24.5             | 26.0           | 18                   | —                    | 44                                  | 74   |
| M30x2.0 | 28.0             | 30.0           | 22                   | 20                   | 59                                  | 89   |
| M36x2.0 | 34.0             | 36.0           | 28                   | 25                   | 74                                  | 111  |
| M42x2.0 | 40.0             | 42.0           | _                    | 30                   | 74                                  | 162  |
| M45x2.0 | 43.0             | 45.0           | 35                   | _                    | 133                                 | 184  |
| M52x2.0 | 50.0             | 52.0           | 42                   | 38                   | 148                                 | 221  |

### **DIN 24° Male and Mating Females**



Male 24° Cone, DIN 2353 (MDL/MDH)

Female 24° Cone with O-Ring (FDLORX/FDHORX)

O-Ring

| Thread    |                                                                                                                                         | /// |
|-----------|-----------------------------------------------------------------------------------------------------------------------------------------|-----|
| I.D.<br>↓ | $ \qquad \qquad$ |     |
|           |                                                                                                                                         |     |

Female Universal 24° and 60° Cone (FDLX/FDHX)

www.gates.com/hydraulics

| Power<br>Crimp<br>Coupling               | ŝS        |  |
|------------------------------------------|-----------|--|
| low<br>Pressur<br>Coupling               | E<br>SS   |  |
| POLARSE<br>Coupling                      | AL<br>SS  |  |
| C14<br>Coupling                          | S         |  |
| PCTS<br>Thermo-<br>Plastic<br>Coupling   | ŝS        |  |
| Field<br>Attachai<br>G1 & G2<br>Coupling | BLE       |  |
| Field<br>Attachai<br>C5<br>Coupling      | BLE       |  |
| Surelok<br>Brake<br>Coupling             | AIR<br>SS |  |
| QUICK<br>Disconni<br>Coupler:            | ECT<br>S  |  |
| NEW BALI<br>Valves                       | L         |  |
| ACCESSO                                  | RIES      |  |
| equipmei<br>And Part                     | NT<br>Is  |  |
|                                          |           |  |
| C34                                      |           |  |

EQUIPMENT

HOSE/CPLG. SELECTION

GLOBALSPIRAL

COUPLINGS

PCM/PCS

FERRULES

MEGACRIMP COUPLINGS



The World's Most Trusted Name in Belts, Hose and Hydraulics.



EQUIPMENT

HOSE/CPLG. Selection

GLOBALSPIRAL Couplings

PCM/PCS Ferrules

MEGACRIMP Couplings

Power Crimp Couplings

low Pressure Couplings

POLARSEAL COUPLINGS

C14 Couplings

PCTS THERMO-PLASTIC COUPLINGS

FIELD ATTACHABLE G1 & G2 COUPLINGS

FIELD ATTACHABLE C5 COUPLINGS

SURELOK AIR Brake Couplings

QUICK DISCONNECT COUPLERS

NEW BALL Valves

ACCESSORIES

EQUIPMENT AND PARTS

C35

**Coupling Identification** 

# Foreign Thread Types – German DIN (con't.)

# DIN 60° Cone

The DIN 60° cone male will mate with the female universal 24° or 60° cone connector only.

The male has a 60° seat and straight metric threads. The female has a 24° and 60° universal seat and straight metric threads.

When measuring the flare angle with the seat angle gauge, use the 30° gauge. The seat angle gauge measures the angle from the connector centerline.

| Metric Thread | Female Thread | Male Thread | Tube O.D. | Torque Recommendation (Ft. Lbs.) |      |  |
|---------------|---------------|-------------|-----------|----------------------------------|------|--|
| Size          | I.D. (mm)     | 0.D. (mm)   | (mm)      | Min.                             | Max. |  |
| M14x1.5       | 12.5          | 14.0        | 8         | 15                               | 26   |  |
| M16x1.5       | 14.5          | 16.0        | 10        | 18                               | 30   |  |
| M18x1.5       | 16.5          | 18.0        | 12        | 22                               | 33   |  |
| M22x1.5       | 20.5          | 22.0        | 15        | 30                               | 52   |  |
| M26x1.5       | 24.5          | 26.0        | 18        | 44                               | 74   |  |
| M30x1.5       | 28.5          | 30.0        | 22        | 59                               | 59   |  |
| M38x1.5       | 36.5          | 38.0        | 28        | 74                               | 111  |  |
| M45x1.5       | 43.5          | 45.0        | 35        | 133                              | 184  |  |
| M52x2.0       | 50.5          | 52.0        | 42        | 148                              | 221  |  |

### DIN 60° Male and Mating Female



Male 60° Cone, DIN 6711

Female Universal 24° and 60° Cone

W


## **Coupling Identification**

### Foreign Thread Types – German DIN (con't.)

## DIN 3852 Couplings Type A & B (Parallel Threads)

The male DIN 3852 Type A & B couplings will mate with the female DIN coupling shown below. Gates offers this thread as an adapter.

The male and female type A & B couplings have straight threads. The seal occurs when the ring seal (Type A) or the face seal (Type B) mates with the face of the female port.

There are two series of DIN 3852 Type A & B couplings, the light (L) and the heavy (S) series.

Note: Commonly used threads on male metric adapters.

DIN 3852 Couplings Type A & B (Parallel Threads)



Male Type A Male Type B



Female Types A & B

|         | Tube | Metric Three |             |      |      | ead Parallel |      |      | Whitworth Thread Parallel |          |             |         |      |             |          |      |      |
|---------|------|--------------|-------------|------|------|--------------|------|------|---------------------------|----------|-------------|---------|------|-------------|----------|------|------|
| Corioo  | 0.0  | Thread       | Fei         | male |      |              | Male | )    |                           | Thread   | Femal       | e (BSPO | R)   |             | Male (BS | SPP) |      |
| 361162  | 0.0. | a            | Thread I.D. | Α    | В    | Thread O.D.  | Α    | В    | C                         |          | Thread I.D. | Α       | В    | Thread O.D. | Α        | В    | C    |
|         | (mm) | Size         | (mm)        | (mm) | (mm) | (mm)         | (mm) | (mm) | (mm)                      | Size     | (ln.)       | (mm)    | (mm) | (In.)       | (mm)     | (mm) | (mm) |
|         | 6    | 10x1.0       | 8.5         | 15   | 1.0  | 10           | 14   | 1.5  | 8                         | 1/8-28   | 11/32       | 15      | 1.0  | 3/8         | 14       | 1.5  | 8    |
|         | 8    | 12x1.5       | 10.5        | 18   | 1.5  | 12           | 17   | 2.0  | 12                        | 1/4-19   | 15/32       | 19      | 1.5  | 1/2         | 17       | 2.0  | 12   |
|         | 10   | 14x1.5       | 12.5        | 20   | 1.5  | 14           | 19   | 2.0  | 12                        | 1/4-19   | 15/32       | 19      | 1.5  | 1/2         | 19       | 2.0  | 12   |
|         | 12   | 16x1.5       | 14.5        | 22   | 1.5  | 16           | 21   | 2.5  | 12                        | 3/8-19   | 19/32       | 23      | 2.0  | 21/32       | 21       | 2.5  | 12   |
| Light   | 15   | 18x1.5       | 16.5        | 24   | 2.0  | 18           | 23   | 2.5  | 12                        | 1/2-14   | 3/4         | 27      | 2.5  | 13/16       | 23       | 2.5  | 12   |
| L LIGHT | 18   | 22x1.5       | 20.5        | 28   | 2.5  | 22           | 27   | 3.0  | 14                        | 1/2-14   | 3/4         | 27      | 2.5  | 13/16       | 27       | 3.0  | 14   |
|         | 22   | 26x1.5       | 24.5        | 32   | 2.5  | 26           | 31   | 3.0  | 16                        | 3/4-14   | 31/32       | 33      | 2.5  | 1-1/32      | 31       | 3.0  | 16   |
|         | 28   | 33x2.0       | 31.5        | 40   | 2.5  | 33           | 39   | 3.0  | 18                        | 1-11     | 1-7/32      | 40      | 2.5  | 1-5/16      | 39       | 3.0  | 18   |
|         | 35   | 42x2.0       | 40.5        | 50   | 2.5  | 42           | 49   | 3.0  | 20                        | 1-1/4-11 | 1-17/32     | 50      | 2.5  | 1-21/32     | 49       | 3.0  | 20   |
|         | 42   | 48x2.0       | 46.5        | 56   | 2.5  | 48           | 55   | 3.0  | 22                        | 1-1/2-11 | 1-25/32     | 56      | 2.5  | 1-7/8       | 55       | 3.0  | 22   |
|         | 6    | 12x1.5       | 10.5        | 18   | 1.5  | 12           | 17   | 2.0  | 12                        | 1/4-19   | 15/32       | 19      | 1.5  | 1/2         | 17       | 2.0  | 12   |
|         | 8    | 14x1.5       | 12.5        | 20   | 1.5  | 14           | 19   | 2.0  | 12                        | 1/4-19   | 15/32       | 19      | 1.5  | 1/2         | 19       | 2.0  | 12   |
|         | 10   | 16x1.5       | 14.5        | 22   | 1.5  | 16           | 21   | 2.5  | 12                        | 3/8-19   | 19/32       | 23      | 2.0  | 21/32       | 21       | 2.5  | 12   |
|         | 12   | 18x1.5       | 16.5        | 24   | 2.0  | 18           | 23   | 2.5  | 12                        | 3/8-19   | 19/32       | 23      | 2.0  | 21/32       | 23       | 2.5  | 12   |
| Cilloon | 14   | 20x1.5       | 18.5        | 26   | 2.0  | 20           | 25   | 3.0  | 14                        | 1/2-14   | 3/4         | 27      | 2.5  | 13/16       | 25       | 3.0  | 14   |
| 5 neavy | 16   | 22x1.5       | 20.5        | 28   | 2.5  | 22           | 27   | 3.0  | 14                        | 1/2-14   | 3/4         | 27      | 2.5  | 13/16       | 27       | 3.0  | 14   |
|         | 20   | 27x2.0       | 25.5        | 33   | 2.5  | 27           | 32   | 3.0  | 16                        | 3/4-14   | 31/32       | 33      | 2.5  | 1-1/32      | 32       | 3.0  | 16   |
|         | 25   | 33x2.0       | 31.5        | 40   | 2.5  | 33           | 39   | 3.0  | 18                        | 1-11     | 1-7/32      | 40      | 2.5  | 1-5/16      | 39       | 3.0  | 18   |
|         | 30   | 42x2.0       | 40.5        | 50   | 2.5  | 42           | 49   | 3.0  | 20                        | 1-1/4-11 | 1-17/32     | 50      | 2.5  | 1-21/32     | 49       | 3.0  | 20   |
|         | 38   | 48x2.0       | 46.5        | 56   | 2.5  | 48           | 55   | 3.0  | 22                        | 1-1/2-11 | 1-25/32     | 56      | 2.5  | 1-7/8       | 55       | 3.0  | 22   |

### GLOBALSPIRAL COUPLINGS PCM/PCS FERRULES MEGACRIMP COUPLINGS POWER CRIMP COUPLINGS LOW PRESSURE COUPLINGS POLARSEAL COUPLINGS C14 COUPLINGS PCTS THERMO-PLASTIC COUPLINGS FIELD ATTACHABLE G1 & G2 COUPLINGS FIELD ATTACHABLE C5 COUPLINGS SURELOK AIR BRAKE COUPLINGS

EQUIPMENT

HOSE/CPLG. SELECTION

EQUIPMENT AND PARTS

ACCESSORIES

NEW BALL VALVES

QUICK DISCONNECT COUPLERS





## **Coupling Identification**

### Foreign Thread Types – German DIN (con't.)

### DIN 3852 Type C Metric and Whitworth Tapered (BSPT) Thread Connectors

The DIN 3852 Type C couplings are available with either

The male and female couplings have tapered threads.

of DIN 3852 Type C Couplings: extra light (LL),

with the female as shown.

light (L) and heavy (S).

metric or Whitworth British thread. The male will mate only

The seal takes place on the threads. There are three series

DIN 3852 Type C Metric and Whitworth Tapered Thread Connectors



**Metric Tapered Threads** Whitworth Tapered Threads Tube Female Male Female Male Thread Thread Series 0.D. Thread I.D. Thread O.D Thread I.D. Thread O.D A (mm) A (mm) B (mm) A (mm) A (mm) B (mm) Size Size (mm) (mm)(mm) (In.) (In.) 8x1.0 8.40 1/8-28 .392 8 6.5 5.5 8 8 11/32 5.5 1/8 LL Extra 65 8 8.40 5 8x1.0 55 8 1/8-28 11/32 5.5 1/8392 8 10.40 6 10x1.0 85 5.5 10 8 1/8-28 11/32 5.5 1/8392 8 Light 10x1.0 85 5.5 10 10.40 8 1/8-28 11/32 55 1/8 .392 8 8 6 10x1.0 8.5 5.5 10 10.40 8 1/8-28 11/32 5.5 1/8 .392 8 8 12x1.5 10.5 8.5 12 12.53 12 1/4-19 15/32 8.5 1/4 .532 12 L 10 14x1.5 12.5 8.5 14 14.53 12 1/4 - 1915/328.5 1/4.532 12 12 16x1.5 14.5 8.5 16 16.53 12 3/8-19 19/32 8.5 3/8 .670 12 Light 18x1.5 16.5 18 18.53 12 1/2-14 3/4 8.5 1/2 .839 14 15 8.5 10.5 18 22x1.5 20.5 10.5 22 22.65 14 1/2-14 3/4 1/2 839 14 6 12x1.5 10.5 8.5 12 12.53 12 1/4-19 15/32 8.5 1/4 .532 12 8 14x1.5 12.5 8.5 14 14.53 12 1/4-19 15/32 8.5 1/4 .532 12 16.53 12 3/8-19 8.5 10 16x1.5 14.5 8.5 16 19/32 3/8 .670 12 S Heavy 12 18x1.5 16.5 8.5 18 18.53 12 3/8-19 19/32 85 3/8 .670 12 14 20x1.5 18.5 10.5 20 20.65 14 1/2-14 3/4 10.5 1/2 .839 14 16 22x1.5 20.5 10.5 22 22.65 14 1/2-14 3/4 10.5 1/2 .839 14

## Metric Stand Pipe Assembly

A metric stand pipe assembly is comprised of three components attached to a male fitting. The components are: a Stand Pipe Tube, Bite Sleeve and Metric Nut. The nut is placed over the Stand Pipe, followed by the Bite Sleeve (see illustration below). For DIN light assemblies, a DIN light metric nut is used. For DIN heavy assemblies, a DIN heavy metric nut is used. The Bite Sleeve and Stand Pipe are selected on the basis of tube O.D.



| Metric Stand Pipe | Bite Sleeve | Metric Nut | Thread  |
|-------------------|-------------|------------|---------|
| (mm)              | (mm)        | Light      | Heavy   |
| 6                 | 6           | M12x1.5    | —       |
| 8                 | 8           | M14x1.5    | M16x1.5 |
| 10                | 10          | M16x1.5    | M18x1.5 |
| 12                | 12          | M18x1.5    | M20x1.5 |
| 15                | 15          | M22x1.5    | _       |
| 16                | 16          | —          | M24x1.5 |
| 18                | 18          | M26x1.5    | _       |
| 20                | 20          | —          | M30x2.0 |
| 22                | 22          | M30x2.0    | _       |
| 25                | 25          | —          | M36x2.0 |
| 28                | 28          | M36x2.0    | _       |
| 30                | 30          | —          | M42x2.0 |
| 35                | 35          | M45x2.0    | _       |
| 38                | 38          |            | M52x2.0 |
| 42                | 42          | M52x2.0    | _       |

HOSE/CPLG. Selection

GLOBALSPIRAL Couplings

PCM/PCS Ferrules

MEGACRIMP Couplings

POWER CRIMP COUPLINGS

LOW PRESSURE COUPLINGS

POLARSEAL

C14 Couplings

PCTS THERMO-PLASTIC COUPLINGS

FIELD Attachable G1 & G2 Couplings

FIELD Attachable C5 Couplings

SURELOK AIR BRAKE COUPLINGS

QUICK Disconnect Couplers

NEW BALL VALVES

EQUIPMENT AND PARTS

**C37** 

Gates Corporation





## **Coupling Identification**

### Foreign Thread Types (con't.)

Japanese

There are two popular types of coupling styles in Japan, Japanese Industrial Standard and Komatsu. These couplings look similar to Male JIC and Female JIC Swivel couplings. However there are two major differences: The threads are BSP and the seat angle is only 30° instead of 37° for JIC.

- 1. Japanese Industrial Standard. Most Japanese equipment uses this type of coupling with a 30° seat and British Standard Pipe Parallel threads. They are not interchangeable with British couplings, since the flare is not inverted.
- 2. Komatsu. All Komatsu equipment uses couplings with a 30° seat and metric fine threads. All flanges are Code 61 or Code 62, except -10 which utilizes a special Komatsu-style flange that does not conform to SAE standard sizing.

## Japanese 30° Flare **Parallel Threads**

The Japanese 30° flare male connector will mate with a Japanese 30° flare female only.

The male and female have straight threads and a 30° seat. The seal is made on the 30° seat.

The threads on the Japanese 30° flare connector conform to JIS B 0202, which are the same as the BSPOR threads. Both the British and Japanese connectors have a 30° seat, but they are not interchangeable because the British seat is inverted.

| Dash Size | Nominal Size<br>(In.) | Thread Size | Female Thread<br>I.D. (In.) | Male Thread<br>0.D. (In.) |
|-----------|-----------------------|-------------|-----------------------------|---------------------------|
| -2        | 1/8                   | 1/8 – 28    | 11/32                       | 3/8                       |
| -4        | 1/4                   | 1/4 – 19    | 7/16                        | 17/32                     |
| -6        | 3/8                   | 3/8 – 19    | 19/32                       | 21/32                     |
| -8        | 1/2                   | 1/2 – 14    | 3/4                         | 13/16                     |
| -10       | 5/8                   | 5/8 – 14    | 13/16                       | 29/32                     |
| -12       | 3/4                   | 3/4 – 14    | 15/16                       | 1-1/32                    |
| -16       | 1                     | 1 – 11      | 1-13/16                     | 1-15/16                   |
| -20       | 1-1/4                 | 1-1/4 — 11  | 1-17/32                     | 1-21/32                   |
| -24       | 1-1/2                 | 1-1/2 - 11  | 1-25/32                     | 1-7/8                     |
| -32       | 2                     | 2 – 11      | 2-7/32                      | 2-11/32                   |



(MJIS)

(FJISX)

### **Japanese Tapered Pipe Thread**

The Japanese tapered pipe thread connector is identical to and fully interchangeable with the BSPT (tapered) connector. The Japanese connector does not have a 30° flare and will not mate with the BSPOR female.

The threads conform to JIS B 0203, which are the same as BSPT threads.

The seal on the Japanese tapered pipe thread connector is made on the threads.

| Dash Size | Nominal Size | Thread Size | Female Parallel | Male Parallel |
|-----------|--------------|-------------|-----------------|---------------|
| -2        | 1/8          | 1/8 – 28    | 11/32           | 3/8           |
| -4        | 1/4          | 1/4 – 19    | 7/16            | 17/32         |
| -6        | 3/8          | 3/8 – 19    | 19/32           | 21/32         |
| -8        | 1/2          | 1/2 – 14    | 3/4             | 13/16         |
| -12       | 3/4          | 3/4 – 14    | 15/16           | 1-1/32        |
| -16       | 1            | 1 – 11      | 1-13/16         | 1-15/16       |
| -20       | 1-1/4        | 1-1/4 – 11  | 1-17/32         | 1-21/32       |
| -24       | 1-1/2        | 1-1/2 – 11  | 1-25/32         | 1-7/8         |
| -32       | 2            | 2 – 11      | 2-7/32          | 1-11/32       |
| -32       | 2            | 2 - 11      | 2-7/32          | 2-11/32       |



Male (MBSPT)

Thread I.D. Female (FBSPT)

The World's Most Trusted Name in Belts, Hose and Hydraulics.

www.gates.com/hydraulics

EQUIPMENT

HOSE/CPLG. SELECTION

GLOBALSPIRAL COUPLINGS

PCM/PCS FERRULES

MEGACRIMP COUPLINGS

POWER CRIMP COUPLINGS

LOW PRESSURE COUPLINGS

POLARSEAL COUPLINGS

C14

COUPLINGS

PCTS THERMO-PLASTIC

COUPLINGS

FIELD ATTACHABLE G1 & G2

COUPLINGS FIELD

ATTACHABLE C5 COUPLINGS

SURELOK AIR BRAKE COUPLINGS

OLIICK DISCONNECT

COUPLERS

NEW BALL VALVES

ACCESSORIES

EQUIPMENT AND PARTS



HOSE/CPLG. SELECTION

GLOBALSPIRAL

COUPLINGS

PCM/PCS

FERRULES

MEGACRIMP

COUPLINGS

COUPLINGS

COUPLINGS

POLARSEAL

POWER CRIMP

LOW PRESSURE

C14 COUPLINGS

PCTS

THERMO-

PLASTIC

FIELD

G1 & G2

FIELD Attachable

C5

COUPLINGS

COUPLINGS

SURELOK AIR

BRAKE Couplings

QUICK DISCONNECT

COUPLERS

NEW BALL

ACCESSORIES

EQUIPMENT AND PARTS

VALVES

COUPLINGS

ATTACHABLE

### **Hose & Coupling Section**

**Coupling Identification** 

Foreign Thread Types – Japanese (con't.)

### Komatsu Style 30° Flare Parallel Threads

The Komatsu style 30° flare parallel thread connector is identical to the Japanese 30° flare parallel thread connector except for the threads. The Komatsu style connector uses metric fine threads which conform to JIS B 0207. Gates identifies these as Komatsu-style by marking the hex nuts with two small notches.

| Dash | Nominal Size |          |             | Female              | Male Thread |  |
|------|--------------|----------|-------------|---------------------|-------------|--|
| Size | (In.)        | (mm)     | Thread Size | Thread I.D.<br>(mm) | (0.D.) (mm) |  |
| -6   | 3/8          | 9.5      | M18x1.5     | 16.5                | 18          |  |
| -8   | 1/2          | 13       | M22x1.5     | 20.5                | 22          |  |
| -10  | 5/8          | 16       | M24x1.5     | 22.5                | 24          |  |
| -12  | 3/4          | 19       | M30x1.5     | 28.5                | 30          |  |
| -16  | 1            | 25       | M33x1.5     | 31.5                | 33          |  |
| -20  | 1-1/4        | 32       | M36x1.5     | 34.5                | 36          |  |
| -24  | 1-1/2        | 1-1/2 38 |             | 40.5                | 42          |  |

The Komatsu style connector seals on the 30° flare.





Female (FKX)

Male (MK)

## Komatsu Style Flange Fitting

The Komatsu style flange fitting is nearly identical to and fully interchangeable with the SAE Code 61 flange fitting. In all sizes the O-ring dimensions are different. When replacing a Komatsu style flange with an SAE style flange, an SAE style O-ring must always be used.



\*(-10 is a non-SAE size flange)





Flange (FL)

## Metric Kobelco Metric Bite Sleeve

Flange Head

These are similar to the German DIN 24° cone, but the DIN style uses courser threads. Therefore, the Kobelco and German DIN are not interchangeable for female Kobelco (see French GAZ 24° swivel).



| Male | <b>24</b> ° | Cone | (MKB) |
|------|-------------|------|-------|
|      |             |      | (     |

| Dash<br>Size | Metric Thread<br>Size | Female Thread I.D.<br>(mm) | Male Thread<br>O.D. (mm) |
|--------------|-----------------------|----------------------------|--------------------------|
| -22          | M30X1.5               | 28                         | 30                       |
| -28          | M36X1.5               | 34                         | 36                       |
| -35          | M45X1.5               | 43                         | 45                       |

\_\_\_\_\_Male 24°

www.gates.com/hydraulics







## **Hose & Coupling Section**

EQUIPMENT

HOSE/CPLG. SELECTION

GLOBALSPIRAL COUPLINGS

PCM/PCS FERRULES

MEGACRIMP COUPLINGS

POWER CRIMP COUPLINGS

LOW PRESSURE

COUPLINGS

POLARSEAL COUPLINGS

C14 COUPLINGS

PCTS THERMO-

PLASTIC COUPLINGS

FIELD ATTACHABLE

G1 & G2 COUPLINGS

FIELD ATTACHABLE C5 COUPLINGS

SURELOK AIR BRAKE

COUPLINGS

QUICK DISCONNECT COUPLERS

NEW BALL VALVES

> ACCESSORIES EQUIPMENT

> > AND PARTS

| www.gates.com/hydraulics |  |
|--------------------------|--|

| Ga  | tes | Glob   | bal  | Par   | t Ni  | umbe | ering | J S | yst                   | tem | 1 |
|-----|-----|--------|------|-------|-------|------|-------|-----|-----------------------|-----|---|
| Thr | ead | Config | gura | ation | s for | Stem | Style | es  |                       |     |   |
|     |     |        |      | 1 .10 |       |      |       |     | <i>c</i> <sup>1</sup> |     |   |

These three-digit numbers identify the various coupling thread configurations

| 100 - | – MP          | Male Pipe (NPTF - 30° Cone Seat)                                    | 177        | -FJX60           | Female JIC 37° Flare Swivel - 60° Bent Tube                                                    |
|-------|---------------|---------------------------------------------------------------------|------------|------------------|------------------------------------------------------------------------------------------------|
| 101 - | – MPLN        | Male Pipe Long Nose                                                 | 178        | -FJX60L          | Female JIC 37° Flare Swivel - 60° Bent Tube Long                                               |
| 102   | -MPAPI        | Male Pipe for API Unions                                            |            |                  | Drop                                                                                           |
| 103   | -MPLH         | Male Pipe Long Hex                                                  | 179        | -FJX90S          | Female JIC 37° Flare Swivel - 90° Bent Tube                                                    |
| 105   | -MPX          | Male Pipe Swivel (NPTF - Without 30° Cone                           |            |                  | Short Drop                                                                                     |
|       |               | Seat)                                                               | 180        | -FJX90M          | Female JIC 37° Flare Swivel - 90° Bent Tube                                                    |
| 106   | -MPX90        | Male Pipe Swivel - 90° Block (NPTF - Without 30° Cone Seat)         | 181        | -FJX90L          | Female JIC 37° Hare Swivel - 90° Bent Tube Long<br>Drop                                        |
| 107   | -MPX90L       | Male Pipe Swivel - 90° Block Long (NPTF –<br>Without 30° Cone Seat) | 182        | -FJX90XL         | Female JIC 37° Flare Swivel - 90° Bent Tube<br>Extra Long Drop                                 |
| 110   | - FP<br>- FPX | Female Pipe (NPTF - Without 30° Cone Seat)                          | 183        | -FJX90-000       | Female JIC 37° Flare Swivel - 90° Bent Tube<br>Non-ISO Drop (mm)                               |
| 112   | FPXT          | Female Pine Swivel Tanered Threads (NPTE)                           | 185        | -FJXP            | Female JIC 37° Flare Swivel Under Pressure                                                     |
| 120   | -MB           | Male O-Bing Boss                                                    | 187        | -FJX90BLK        | Female JIC 37° Flare Swivel - 90° Block                                                        |
| 121   | -MBX          | Male O-Ring Boss Swivel                                             | 195        | -MS              | Male SAE 45° Flare                                                                             |
| 122   | -MBX45        | Male O-Bing Boss Swivel - 45° Block                                 | 196        | -MS45            | Male SAE 45° Flare - 45° Bent Tube                                                             |
| 123   | -MBX90        | Male O-Ring Boss Swivel - 90° Block                                 | 197        | -MS90            | Male SAE 45° Flare - 90° Bent Tube                                                             |
| 124   | -MBX90L       | Male O-Ring Boss Swivel - 90° Block Long                            | 199        | -MS90BLK         | Male SAE 45° Flare - 90° Block                                                                 |
| 130   | -MBAX         | Male O-Ring Boss Adapterless Swivel                                 | 200        | -FSX             | Female SAE 45° Flare Swivel                                                                    |
| 133   | -MBAX45       | Male O-Ring Boss Adapterless Swivel - 45° Bent                      | 201        | -FSXLT           | Female SAE 45° Flare Swivel Long Tube                                                          |
|       |               | Tube                                                                | 202        | -FSX45           | Female SAE 45° Flare Swivel - 45° Bent Tube                                                    |
| 134   | -MBAX90M      | Male O-Ring Boss Adapterless Swivel - 90°<br>Bent Tube Medium Drop  | 203        | -FSX45L          | Female SAE 45° Flare Swivel - 45° Bent Tube Long Drop                                          |
| 135   | -MBAX90S      | Male O-Ring Boss Adapterless Swivel - 90°<br>Bent Tube Short Drop   | 204        | -FSX90S          | Female SAE 45° Flare Swivel - 90° Bent Tube Short Drop                                         |
| 136   | -MBAX90L      | Male O-Ring Boss Adapterless Swivel - 90°                           | 205        | -FSX90           | Female SAE 45° Flare Swivel - 90° Bent Tube                                                    |
| 140   | -FMX          | Bent Tube Long Drop<br>Female MegaSeal® Swivel                      | 206        | -FSX90L          | Female SAE 45° Flare Swivel - 90° Bent Tube<br>Long Drop                                       |
| 141   | -FMXL         | Female MegaSeal Swivel Long                                         | 207        | -FSX90XL         | Female SAE 45° Flare Swivel - 90° Bent Tube                                                    |
| 142   | -FMX30        | Female MegaSeal Swivel - 30° Bent Tube                              |            |                  | Extra Long Drop                                                                                |
| 143   | -FMX30L       | Female MegaSeal Swivel - 30° Bent Tube Long<br>Drop                 | 210<br>211 | —FJSX<br>—FJSX45 | Dual Seat Female JIC 37°/SAE 45° Flare Swivel<br>Dual Seat Female JIC 37°/SAE 45° Flare Swivel |
| 144   | -FMX45S       | Female MegaSeal Swivel - 45° Bent Tube Short<br>Drop                | 212        | -FJSX90          | - 45° Bent Tube<br>Dual Seat Female JIC 37°/SAE 45° Flare Swivel                               |
| 145   | -FMX45        | Female MegaSeal Swivel - 45° Bent Tube                              | 010        |                  | - 90 Dent Tube                                                                                 |
| 146   | -FMX45L       | Female MegaSeal Swivel - 45° Bent Tube Long<br>Drop                 | 213        | -FJSA90L         | - 90° Bent Tube Long Drop                                                                      |
| 147   | -FMX60        | Female MegaSeal Swivel - 60° Bent Tube                              | 225        |                  | Male Flat-Face O-Ring                                                                          |
| 148   | -FMX60L       | Female MegaSeal Swivel - 60° Bent Tube Long                         | 220        |                  | Formale Flat Face O-Ring Buiki lead Long Nose                                                  |
|       |               | Drop                                                                | 229        |                  | Female Flat-Face O-Fling Swivel Short                                                          |
| 149   | -FMX90S       | Female MegaSeal Swivel - 90° Bent Tube Short                        | 230        |                  | Female Flat-Face O-Ring Swivel Long                                                            |
| 150   |               | Female MegaSeal Swivel - 90° Bent Tube                              | 234        | -FFORX45S        | Female Flat-Face Swivel - 45° Bent Tube Short                                                  |
| 151   | -FMX90L       | Female MegaSeal Swivel - 90° Bent Tube Long                         | 201        |                  | Drop<br>Econolo Flat Face Switch 45° Bont Tube                                                 |
| 152   | -FMX90XL      | Female MegaSeal Swivel - 90° Bent Tube Extra                        | 239        | -FFORX90S        | Female Flat-Face Swivel - 90° Bent Tube Short                                                  |
| 165   | — M. I        | Male JIC 37° Flare                                                  | 240        | -FEORX90M        | Female Flat-Face Swivel - 90° Bent Tube                                                        |
| 166   | -MJI          | Male JIC 37° Flare Long                                             | 241        | -FFORX90         | Female Flat-Face Swivel - 90° Bent Tube Long                                                   |
| 167   | -M.190BL K    | Male JIC 37° Flare - 90° Block                                      |            |                  | Drop                                                                                           |
| 170   | —FJX          | Female JIC 37° Flare Swivel                                         | 242        | -FFORX90XL       | Female Flat-Face Swivel - 90° Bent Tube Extra                                                  |
| 171   | -FJXL         | Female JIC 37° Flare Swivel Long                                    |            |                  | Long Drop                                                                                      |
| 172   | -FJX30        | Female JIC 37° Flare Swivel - 30° Bent Tube                         | 248        | -FFORX135        | Female Flat-Face Swivel - 135° Bent Tube                                                       |
| 173   | -FJX30L       | Female JIC 37° Flare Swivel - 30° Bent Tube                         | 300        | -FL              | Code 61 O-Ring Flange                                                                          |
|       |               | Long Drop                                                           | 301        | -FLL             | Code 61 O-Ring Flange Long                                                                     |
| 174   | -FJX45S       | Female JIC 37° Flare Swivel - 45° Bent Tube                         | 302        | -+L22            | Code 61 O-Ring Hange – 22-1/2° Bent Tube                                                       |
|       |               | Short Drop                                                          | 304        | -FL30            | Code 61 O-Ring Hange - 30° Bent Tube                                                           |
| 175   | -FJX45        | Female JIC 37° Flare Swivel - 45° Bent Tube                         | 305        | —FL30L           | Code 61 O-Ring Flange - 30° Bent Tube Long<br>Drop                                             |
| 1/6   | —FJX45L       | Female JIC 37° Flare Swivel - 45° Bent Tube Long<br>Drop            |            |                  |                                                                                                |





HOSE/CPLG. Selection

## **Gates Global Part Numbering System**

### **Thread Configurations – continued**

| <b>306</b><br>Drop | -FL45S      | Code 61 O-Ring Flange - 45° Bent Tube Short                  | 416 - FLC90L               | Caterpillar Style O-Ring Flange (Code 62) - 90°<br>Bent Tube Long Drop | GLOBALSPIRAL |
|--------------------|-------------|--------------------------------------------------------------|----------------------------|------------------------------------------------------------------------|--------------|
| 307                | —FL45       | Code 61 O-Ring Flange - 45° Bent Tube                        | 450 — TBFL                 | Two Bolt Flange (Code 61)                                              | GOOPLINGS    |
| 309                | —FL60       | Code 61 O-Ring Flange - 60° Bent Tube                        | <b>452</b> – TBFL45        | Two Bolt Flange (Code 61) - 45° Bent Tube                              |              |
| 310                | -FL60L      | Code 61 O-Ring Flange - 60° Bent Tube Long                   | <b>454</b> – TBFL90        | Two Bolt Flange (Code 61) - 90° Bent Tube                              | PCM/PCS      |
|                    |             | Drop                                                         | <b>460</b> – ABC           | Air Brake Compression                                                  | FERRULES     |
| 311                | —FL67       | Code 61 O-Ring Flange – 67-1/2° Bent Tube                    | 461 -STA                   | Straight Tube Assembly                                                 |              |
| 312                | -FL67L      | Code 61 O-Ring Flange – 67-1/2° Bent Tube Long               | 470 — FPFL                 | French Poclain Flange                                                  | MECACDIMD    |
|                    |             | Drop                                                         | 500 -MIX                   | SAF Male Inverted Swivel                                               |              |
| 313                | -FL90XS     | Code 61 O-Ring Flange - 90° Bent Tube Extra                  | 501 - MIX                  | SAE Male Inverted Swivel Long                                          | OUDI LINUS   |
|                    |             | Short Drop                                                   | 502 - MIX45                | SAE Male Inverted Swivel - 45° Bent Tube                               |              |
| 314                | -FL90S      | Code 61 O-Ring Flange - 90° Bent Tube Short                  | 504 — MIX90                | SAE Male Inverted Swivel - 90° Bent Tube                               | POWER        |
| 045                | FL 00       | Drop                                                         | 506 - MIX120               | SAE Male Inverted Swivel - 120° Bent Tube                              | CRIMP        |
| 315                | -FL90       | Code 61 O-Ring Flange - 90° Bent Tube                        | 508 —FI                    | Female Inverted                                                        | COUPLINGS    |
| 316                | -FL90L      | Code 61 O-Ring Flange - 90° Bent Tube Long                   | 510 -MEA                   | SAE Malo Elaraloss Assombly                                            |              |
| 217                |             | Code 61 O Ping Flange 00° Pont Tube Extra                    | 511 MEAOO                  | SAE Male Flareless Assertibly                                          | LOW          |
| 317                | -FL90AL     | Long Drop                                                    | 511 - MIFA90               | Stand Dine                                                             | PRESSURE     |
| 318                | - FL 90XXI  | Code 61 O-Bing Flange - 90° Bent Tube Extra                  | 520 - 3P                   | Stand Pipe Long                                                        | COUPLINGS    |
| •.•                | . 2007012   | Extra Long Drop                                              | 521 - 3PL                  | Stand Pipe Long                                                        |              |
| 323                | -FL100      | Code 61 O-Ring Flange - 100° Bent Tube                       | <b>522</b> - 3P43          | Stand Pipe - 43 Dent Tube                                              |              |
| 325                | —FL110      | Code 61 O-Ring Flange - 110° Bent Tube                       | 524 — SP90                 | Stand Pipe - 90° Bent Tube                                             | POLARSEAL    |
| 327                | —FL120      | Code 61 O-Ring Flange - 120° Bent Tube                       | 527 — FBO                  | Female Braze-On Stems                                                  | GOUPLINGS    |
| 329                | —FL125      | Code 61 O-Ring Flange - 125° Bent Tube                       | 530 -PL                    | Male Press-Loc Stems                                                   |              |
| 331                | —FL135      | Code 61 O-Ring Flange - 135° Bent Tube                       | 531 —PL45                  | Male Press-Loc Stems - 45° Bent Tube                                   | C14          |
| 342                | -RFL905     | Reuseable Flange - 90° Special                               | 532 - PL90                 | Male Press-Loc Stems - 90° Bent Tube                                   | COUPLINGS    |
| 350                | —FLH        | Code 62 O-Ring Flange Heavy                                  | 535 -HLE                   | Hose Length Extender                                                   |              |
| 351                | — FLHL      | Code 62 O-Ring Flange Heavy Long                             | 536 — HLE45                | Hose Length Extender - 45° Bent Tube                                   | DOTO         |
| 352                | -FLH22      | Code 62 O-Bing Flange Heavy – 22-1/2° Bent                   | 537 -HLE 90                | Hose Length Extender - 90° Bent Tube                                   | THEBMO-      |
|                    |             | Tube                                                         | 538 — HLESG                | Hose Length Extender - Sight Glass                                     | PLASTIC      |
| 354                | -FLH30      | Code 62 O-Ring Flange Heavy - 30° Bent                       | 539 — HLET                 | Hose Length Extender - Tee                                             | COUPLINGS    |
| Tube               | •           |                                                              | 540 — FABX                 | Female Air Brake Swivel                                                |              |
| 357                | -FLH45      | Code 62 O-Ring Flange Heavy - 45° Bent                       | <b>541</b> – HLE180        | Hose Length Extender - 180° Bent Tube                                  |              |
| Tube               |             |                                                              | 543 — TBFLX                | Two Bolt Flange Swivel                                                 |              |
| 358                | —FLH45L     | Code 62 O-Ring Flange Heavy - 45° Bent                       | 560 - MPG                  | Male Special Grease Fitting                                            | G1 & G2      |
| 250                |             | Code 62 O Ding Elange Heavy 60° Pant                         | <b>561</b> —FG             | Female Special Grease Fitting                                          | COUPLINGS    |
| JUDE               |             | Code 62 O-Ring Flange Heavy - 60 Benn                        | 562 — FZX                  | Parker Triple Thread Female Swivel                                     |              |
| 361                | ,<br>—FLH67 | Code 62 O-Bing Flange Heavy – 67-1/2° Bent                   | 563 - PWX                  | Pressure Washer Swivel (Karcher)                                       |              |
| 001                | T EI IOT    | Tube                                                         | 564 — BJF                  | Banjo (Ford Tractor)                                                   | FIELD        |
| 364                | -FLH90S     | Code 62 O-Ring Flange Heavy - 90° Bent                       | 570 - MST                  | Male SAE 45° Flare - Straight Tube                                     | ATTACHABLE   |
|                    |             | Tube Short Drop                                              | 571 - MST45                | Male SAE 45° Flare - 45° Bent Tube                                     |              |
| 365                | -FLH90      | Code 62 O-Ring Flange Heavy - 90° Bent                       | 572 - MST90                | Male SAE 45° Flare - 90° Bent Tube                                     |              |
| Tube               | <u>}</u>    |                                                              | 579 - FTON134SP45          | Female SAE Tube O-Ring Nut Swivel w/R134A                              |              |
| 366                | -FLH90L     | Code 62 O-Ring Flange Heavy - 90° Bent                       |                            | Service Port - 45° Bent Tube                                           | SURELOK AIR  |
|                    |             | Tube Long Drop                                               | 580 - MTON134SP            | Male SAE Tube O-Ring Nut w/R134a Service                               | BRAKE        |
| 367                | -FLH90XL    | Code 62 O-Ring Flange Heavy - 90° Bent                       |                            | Port                                                                   | COUPLINGS    |
| 270                |             | Flange Without O Bing Croove (Code 62)                       | <b>381</b> - MITUN 1345P45 | Nale SAE Tube O-Ring Nul W/R1348 Service                               |              |
| 310                |             | Catarpillar Style O Ding Elange (Code 62)                    | 582 - MTON134SP90          | Male SAF Tube O-Bing Nut w/B134a Service                               | QUICK        |
| 400                | -FLC        | Caterpillar Style O-Ring Flange (Code 62)                    |                            | Port - 90° Bent Tube                                                   | DISCONNECT   |
| 401                | -FLOL       | Caterpillar Style O-Ring Flange (Code 62) Long               | 583 - MTON                 | Male SAE Tube O-Ring Nut                                               | COUPLERS     |
| 402                | -FLG22      | Caterpiliar Style O-Ring Flange (Code 62) -                  | 584 - MTON45               | Male SAE Tube O-Ring Nut - 45° Bent Tube                               |              |
| 404                | - EL C30    | Caternillar Style O-Ring Flange (Code 62) - 30°              | 585 - MTON90               | Male SAE Tube O-Ring Nut - 90° Bent Tube                               |              |
|                    | . 2000      | Bent Tube                                                    | 586 - FTONR12SP            | Female SAE Tube O-Ring Nut Swivel w/R12                                |              |
| 407                | -FLC45      | Caterpillar Style O-Ring Flange (Code 62) - 45°              |                            | Service Port                                                           | VALVEO       |
|                    |             | Bent Tube                                                    | 587 - FTONR12SP90          | Female SAE Tube O-Ring Nut Swivel w/R12                                |              |
| 409                | -FLC60      | Caterpillar Style O-Ring Flange (Code 62) - 60°              |                            | Service Port- 90° Bent Tube                                            | ACCESSORIES  |
|                    |             | Bent Tube                                                    | 588 - FTON134SP            | Female SAE Tube O-Ring Nut Swivel w/R134a                              |              |
| 411                | -FLC67      | Caterpillar Style O-Ring Flange (Code 62) -                  |                            | Service Port                                                           | FOLIIDMENT   |
|                    |             | 67-1/2° Bent Lube                                            | 589 - FTON134SP90          | Female SAE Tube O-Ring Nut Swivel - 90°                                |              |
| 415                | -FLC90      | Caterpillar Style U-Ring Flange (Code 62) - 90°<br>Bent Tube |                            | Deni Tude W/D134d SEIVICE FUIL                                         |              |



The World's Most Trusted Name in Belts, Hose and Hydraulics.

www.gates.com/hydraulics



EQUIPMENT

HOSE/CPLG. SELECTION

## **Gates Global Part Numbering System Thread Configurations – continued**

| GLOBALSPIRAL<br>Couplings | <b>590</b> — FTON<br><b>591</b> — FTON45 | Female SAE Tube O-Ring Nut Swivel<br>Female SAE Tube O-Ring Nut Swivel - 45° Bent<br>Tube | 751 — MSP45<br>752 — MSP90<br>705 — MPSPT | Metric Stand Pipe - 45° Bent Tube<br>Metric Stand Pipe - 90° Bent Tube                                  |
|---------------------------|------------------------------------------|-------------------------------------------------------------------------------------------|-------------------------------------------|---------------------------------------------------------------------------------------------------------|
| PCM/PCS                   | 592 - FTON90                             | Female SAE Tube O-Ring Nut Swivel - 90° Bent<br>Tube                                      | <b>800</b> - FRSPT                        | Japanese Tapered Thread                                                                                 |
| FERRULES                  | 593 - FTOMN                              | Female SAE Tube O-Ring Metric Nut Swivel                                                  |                                           | Japanese Tapered Thread                                                                                 |
|                           | 594 - FTOMN45                            | Female SAE Tube O-Ring Metric Nut Swivel -                                                | 810 - MBSPP                               | Male British Standard Pipe Parallel                                                                     |
| MEGACRIMP<br>COUPLINGS    | 595 - FTOMN90                            | 45° Bent Tube<br>Female SAE Tube O-Ring Metric Nut Swivel -<br>90° Bent Tube              | 811 — MBSPPLN<br>830 — FBSPORX            | Male British Standard Pipe Parallel Long Nose<br>Female British Standard Parallel Pipe O-Ring<br>Swivel |
| POWER                     | <b>596</b> — FTON90BL<br>Block           | Female SAE Tube O-Ring Nut Swivel - 90°                                                   | 831 - FBSPORX45                           | Female British Standard Parallel Pipe O-Ring<br>Swivel - 45° Bent Tube                                  |
| CRIMP                     | 597 - MIO                                | Male Inverted O-Ring                                                                      | <b>832</b> - FBSPORX90                    | Female British Standard Parallel Pipe O-Ring                                                            |
| COUPLINGS                 | 598 - MIO45                              | Male Inverted O-Ring - 45° Bent Tube                                                      |                                           | Swivel - 90° Bent Tube                                                                                  |
|                           | 599 - MIO90                              | Male Inverted O-Ring - 90° Bent Tube                                                      | 845 - FBSPORX90BL                         | Female British Standard Parallel Pipe O-Ring                                                            |
| LOW                       | 600 - MIOBKHD                            | Male Inverted O-Ring Bulkhead                                                             |                                           | Swivel - 90° Block                                                                                      |
| PRESSURE                  | 601 - MIOBKHD45                          | Male Inverted O-Ring Bulkhead - 45° Bent Tube                                             | 847 - FBX90BLK                            | Female British Standard Pipe Parallel - 90° Block                                                       |
| COUPLINGS                 | 602 - MIOBKHD90                          | Male Inverted O-Ring Bulkhead - 90° Bent Tube                                             | 850 — BSPBJ                               | BSPP Banjo                                                                                              |
|                           | 604 - FTDON                              | Female Tube Dual O-Ring Nut Swivel                                                        | 855 — FBFFX                               | Female British Flat-Face Swivel                                                                         |
| POLARSEAL                 | 605 - FTDON45                            | Female Tube Dual O-Ring Nut Swivel – 45°                                                  | 904 — MK                                  | Male Komatsu                                                                                            |
| COUPLINGS                 |                                          | Bent lube                                                                                 | 910 — FKX                                 | Female Komatsu Style Japanese Metric Swivel                                                             |
|                           | 606 — FIDON90                            | Female Tube Dual O-Ring Nut Swivel – 90°<br>Bent Tube                                     | 911 —FKX45                                | - 45° Bent Tube                                                                                         |
| C14                       | 607 — FTDOMN                             | Female Tube Dual O-Ring Metric Nut Swivel                                                 | 913 — FKX90                               | Female Komatsu Style Japanese Metric Swivel                                                             |
| COUPLINGS                 | 608 — FIDOMN45                           | Female Tube Dual O-Ring Metric Nut Swivel –                                               |                                           | - 90 Deni Tube                                                                                          |
|                           |                                          | Eemale Tube Dual O-Ring Metric Nut Swivel -                                               | 930 — FJISA<br>935 — MMEA                 | Male Metric Flareless Assembly                                                                          |
| PCTS                      |                                          | 90° Bent Tube                                                                             | 947 — ESLTOBSP                            | Female (Ford) Spring Lock "T" O-Bing Splicer                                                            |
| THERMO-                   | 610 - FTON180                            | Female Tube O-Ring Nut Swivel 180°                                                        | 948 —ESLSP                                | Female (Ford) Spring Lock Liquid Line Splicer                                                           |
|                           | 611 - MIO134SP                           | Male Inverted O-Ring w/R134a Service Port                                                 | 949 -MSL45                                | Male (Ford) Spring Lock - 45° Bent Tube                                                                 |
| GOOPLINGS                 | 612 - MIO134SP45                         | Male Inverted O-Ring Bulkhead w/R134a                                                     | 950 -MSL                                  | Male (Ford) Spring Lock                                                                                 |
|                           |                                          | Service Port – 45° Bent Tube                                                              | 951 -MSL90                                | Male (Ford) Spring Lock - 90° Bent Tube                                                                 |
| FIELD<br>Attachari f      | 613 — MIO134SP90                         | Male Inverted O-Ring w/R134a Service Port –<br>90° Bent Tube                              | 952 -FSL                                  | Female (Ford) Spring Lock                                                                               |
| G1 & G2                   | 614 - TORSP                              | Universal T-Splicers English Threads                                                      | 953 - FSL90                               | Female (Ford) Spring Lock - 90° Bent Tube                                                               |
| COUPLINGS                 | 615 - MDL                                | Male DIN Light Series 24° Inverted Cone                                                   | 954 -R12SP                                | Hose Splicer w/R12 7/16-20 Thread Service                                                               |
|                           | 645 - FDLORX                             | Female DIN Light Series O-Ring Swivel 24° Cone                                            | Port                                      | Formale (Four) Contract and 458 Dept Tube                                                               |
| FIELD                     | 650 - FDLORX45                           | Female DIN Light Series O-Ring Swivel 24°<br>Cone - 45° Bent Tube                         | 955 — F3L43<br>956 — R134SP               | Hose Splicer w/R134AService Port                                                                        |
| C5                        | 655 - FDLORX90                           | Female DIN Light Series O-Ring Swivel 24°<br>Cone - 90° Bent Tube                         | 957 — R134SPRL<br>958 — CFTON90           | Female Rotalok w/R134a Service Port – 90° Block<br>Compressor Female Tube O-Ring Nut - 90°              |
| COUPLINGS                 | 670 - FDFFX                              | Female DIN Flat-Face Swivel                                                               |                                           | Bent Tube                                                                                               |
|                           | 675 — MFG                                | Male French GAZ                                                                           | 959 - CHION90BL                           | Compressor Female Tube O-Ring Nut - 90° Block                                                           |
| SURELOK AIR               | 680 — FFGX                               | Female French GAZ Swivel                                                                  | 960 — CFTON134SP90BL                      | Compressor Female Tube O-Ring Nut w/                                                                    |
| BRAKE                     | 685 — FFGX45                             | Female French GAZ Swivel - 45° Bent Tube                                                  | <b>961</b> _CBSB12SP90                    | Compressor Pad Block – Single                                                                           |
| COUPLINGS                 | 690 - FFGX90                             | Female French GAZ Swivel - 90° Bent Tube                                                  | ODI ODOITIZOI 00                          | With Switch or Service Port                                                                             |
|                           | 715 - MDH                                | Male DIN Heavy Series 24° Inverted Cone                                                   | 962 - CBSRR12SP90                         | Compressor Pad Block – Single Reversed                                                                  |
| QUICK                     | 720 - FDHORX                             | Female DIN Heavy Series O-Ring Swivel 24° Cone                                            |                                           | With Switch or Service Port                                                                             |
| DISCONNECT<br>COUPLERS    | 725 - FDHORX45                           | Female DIN Heavy Series O-Ring Swivel 24°<br>Cone - 45° Bent Tube                         |                                           |                                                                                                         |
|                           | 730 - FDHORX90                           | Female DIN Heavy Series O-Ring Swivel 24°<br>Cone - 90° Bent Tube                         |                                           |                                                                                                         |
| NEW BALL                  | <b>735</b> – MKB                         | Metric Kobelco                                                                            |                                           |                                                                                                         |
| VALVES                    | 750 - MSP                                | Metric Stand Pipe                                                                         |                                           |                                                                                                         |

ACCESSORIES

EQUIPMENT AND PARTS





|                                    |                                                                            |                                        |                                                                                            | EQUIPMENT                    |
|------------------------------------|----------------------------------------------------------------------------|----------------------------------------|--------------------------------------------------------------------------------------------|------------------------------|
| Gates G<br>Air Brak                | lobal Part Numbe                                                           | ering Syste                            | m                                                                                          | HOSE/CPLG.<br>Selection      |
| In the following coupling with -8  | example, the Global Part Number (<br>(1/2") tube size and -8 (1/2") thread | G31100-0808 identifie<br>size.         | es a SureLok™ Male Pipe (MP)                                                               | GLOBALSPIRAL<br>Couplings    |
| G 31                               | 100-08                                                                     | 08                                     |                                                                                            | PCM/PCS<br>FERRULES          |
|                                    |                                                                            | Thread Size                            | (1/2")                                                                                     | MEGACRIMP<br>COUPLINGS       |
|                                    | Stem Si                                                                    | ze (1/2")                              |                                                                                            | DOWED                        |
|                                    | Thread Configuration (se                                                   | e below)                               |                                                                                            | CRIMP<br>COUPLINGS           |
| Series Stem                        | <b>1 Style</b> (see below)                                                 |                                        |                                                                                            |                              |
| Series Stem<br>G31−SureLok™        | <b>Styles:</b><br>Fittings (Description = AB)                              |                                        |                                                                                            | LOW<br>PRESSURE<br>COUPLINGS |
| G32—Compressi<br>G33—Air Brake F   | on Fittings (Description = ABC)<br>                                        | = ABR)                                 |                                                                                            | POLARSEAL<br>COUPLINGS       |
| Thread Con<br>These three-digit nu | figurations<br>Imbers identify the various coupling thread                 | configurations                         |                                                                                            | C14<br>COUPLINGS             |
| 021 — MP-ATDV<br>027 — MP-CV       | Air Tank Drain Valve                                                       | 302 — AB-AB-BKHDL<br>350 — AB-MEA-BKHD | Air Brake Bulkhead – Long<br>Air Brake to Male Flareless Assembly Bulkhead                 |                              |
| 030 — MAB-MP                       | Air Brake Adapter                                                          | 360 — AB-FP-BKHD                       | Air Brake to Female Pipe Bulkhead                                                          | PCTS                         |
| 031 — GH                           | Glad Hand                                                                  | 377 — AB-GH-BKHD                       | Air Brake to Glad Hand Bulkhead                                                            | PLASTIC                      |
| 032 — GHS                          | Gladhand Seal                                                              | 400 — AB-AB                            | Air Brake Union                                                                            | COUPLINGS                    |
| 040 — ISI-AB                       | Tube Sleeve Insert                                                         | 404 — AB-AB90                          | Air Brake Union - 90°<br>Air Brake Union - Tao                                             |                              |
| 050 — TS-AB<br>060 — TSN-ΔB        | Tube Sleeve<br>Tube Sleeve Nut                                             | 430 — ΑΒ-ΑΒ-ΑΒ<br>451 — ΔΒ-ΔΒ-ΔΒ       | All Diake Union - Tee Jump UP                                                              | FIELD                        |
| 061 — SGN-ABR                      | Spring Guard Nut                                                           | 452 — AB-AB-AB                         | Air Brake Union - Tee Jump DOWN                                                            | ATTACHABLE                   |
| 100 — AB-MP                        | Air Brake to Male Pipe (NPTF - 30° Cone Seat)                              | 453 — AB-AB-AB                         | Air Brake Union - Tee with Bracket                                                         | COUPLINGS                    |
| 102 — AB-MP45                      | Air Brake to Male Pipe - 45°                                               | 601 — AB-MP-TV                         | Air Brake to Male Pipe Truck Valve - 90°                                                   |                              |
| 104 — AB-MP90                      | Air Brake to Male Pipe - 90°                                               | 602 — MP-ABC-TV                        | Male Pipe to Air Brake Truck Valve - 90°                                                   |                              |
| 105 — AB-MP-Port90                 | Air Brake to Male Pipe - 90° with Port                                     | 610 — MP-MS90-TV                       | Male Pipe to Male SAE 45° Flare Truck Valve - 90°                                          | ATTACHABLE                   |
| 110 — ABR3G-IVIP<br>111 — ABRI-MP  | All blake to Male Pipe with Spring Guard                                   | 612 — MS-MP90-TV<br>620 — SB-MP90-TV   | Nale SAE 43 Flate to Male Pipe Truck Valve - 90<br>Single Read Male Pipe Truck Valve - 90° | C5                           |
| 112 — SGABR                        | Air Brake Spring Guard                                                     | 622 — SB-MP90-TVP                      | Single Bead Male Pipe Truck Valve with Pin Handle -                                        | COUPLINGS                    |
| 122 — AB-MPX45                     | Air Brake to Male Pipe Swivel - 45°                                        | 90°                                    |                                                                                            |                              |
| 124 — AB-MPX90                     | Air Brake to Male Pipe Swivel - 90°                                        | 630 — FP-MP90-TV                       | Female Pipe to Male Pipe Truck Valve - 90°                                                 | SURELOK AIR                  |
| 130 — MP-AB-AB                     | Male Pipe to Air Brake - Tee                                               | 650 — MP-FP-FP3WTV                     | 3-Way Truck Valve                                                                          | BRAKE                        |
| 131 — MP-AB-AB                     | Male Pipe to Air Brake - Tee Jump UP                                       | 655 — FP-FP-FP4WTV                     | 4-Way Truck Valve – Short Handle                                                           | COOPLINGS                    |
| 132 — IVIP-AB-AB<br>132 — ΔR-ΔR-MP | iviale Mipe to All BTAKE - LEE JUMP DOWN<br>Δir Brake to Male Pipe - Τορ   | 000 FP-FP-FP4WTV-L<br>701 ΜΕΔ-ΜΕΛΩΩ    | 4-vvdy TTUCK Valve – LONY Handle<br>Male Flareless Assembly to Male Flareless Assembly     | <b>.</b>                     |
| 135 — AB-AB-MP                     | Air Brake to Male Pipe - Tee Jump UP                                       |                                        | Shut-Off Cock                                                                              |                              |
| 136 — AB-AB-MP                     | Air Brake to Male Pipe - Tee Jump DOWN                                     | 705 — MFA-MPSC                         | Male Flareless Assembly to Male Pipe Shut-Off Cock                                         | COUPLERS                     |
| 138 — AB-AB-MP45                   | Air Brake to Male Pipe - Tee - 45°                                         | 710 — MP-FPSC                          | Male Pipe to Female Pipe Shut-Off Cock                                                     |                              |
| 140 — MPX-AB-AB                    | Male Pipe Swivel to Air Brake - Tee                                        | 715 — FP-FPSC                          | Female Pipe to Female Pipe Shut-Off Cock                                                   | NEW BALL                     |
| 142 — AB-AB-MPX                    | Air Brake to Male Pipe Swivel - Tee                                        | 720 — MS-MPSC                          | Male SAE 45° Flare to Male Pipe Shut-Off Cock                                              | VALVES                       |
| 150 — AB-FP<br>151 — ABB, EP       | AIF Brake to Female Pipe                                                   | 730 — MS-MSSC                          | Male SAE 45° Flare to Male SAE 45° Flare Shut-Off                                          |                              |
| 154 — AB-FP90                      | Air Brake to Female Pine - 90°                                             | 801 — MP-ADC                           | Male Pipe Air Drain Cock                                                                   | ACCESSORIES                  |
| 160 — AB-AB-FP                     | Air Brake to Female Pipe - Tee                                             | 805 — FP-MPADC                         | Female Pipe to Male Pipe Air Drain Cock                                                    |                              |
| 167 — MP-AB-FP                     | Male Pipe to Air Brake to Female Pipe - Tee                                | 832 — MP-ADCBN                         | Male Pipe Air Drain Cock – Bibb Nose                                                       | FOUNDATION                   |
| 300 — AB-AB-BKHD                   | Air Brake Bulkhead                                                         | 850 — ATNKV                            | Air Tank Valve                                                                             | AND PARTS                    |
| 301 — AB-AB-BKHDS                  | Air Brake Bulkhead – Short                                                 | 970 — AB-MAN                           | 6-Port Manifold                                                                            | ANDTAILD                     |





#### EQUIPMENT

HOSE/CPLG. Selection

GLOBALSPIRAL

COUPLINGS

PCM/PCS

FERRULES

MEGACRIMP

COUPLINGS

POWER

CRIMP COUPLINGS

LOW

C14

PCTS THERMO-PLASTIC COUPLINGS

FIELD ATTACHABLE G1 & G2 COUPLINGS

FIELD ATTACHABLE C5 COUPLINGS

SURELOK AIR BRAKE COUPLINGS

QUICK DISCONNECT COUPLERS

NEW BALL VALVES

ACCESSORIES

EQUIPMENT AND PARTS

PRESSURE COUPLINGS

POLARSEAL COUPLINGS

COUPLINGS

# Gates Global Part Numbering System Adapters

In the following example, the Global Part Number G60110-0808 identifies a Male Pipe NPTF (MP) to Male Pipe NPTF (MP) adapter with -8 (1/2") pipe thread and -8 (1/2") pipe thread size. **Meets SAE100R2 working pressures except where noted.** 

#### Series Stem Styles:



These three-digit numbers identify the various coupling thread configurations

| These three-digit hum      | ibers identify the valious coupling thread contin   | guialloris            |                                                           |
|----------------------------|-----------------------------------------------------|-----------------------|-----------------------------------------------------------|
| SAE to SAE                 |                                                     | 60410— MJ-MJ          | Male JIC 37° Flare to Male JIC 37° Flare                  |
| 60050— FFN                 | Female Flareless Nut                                | 60420- M.J-F.J        | Male JIC 37° Flare to Female JIC 37° Flare                |
| 60051—FFS                  | Female Flareless Sleeve                             | 60422— M.J-F.JX       | Male JIC 37° Flare to Female JIC 37° Flare Swivel         |
| 60102— MP-PLUG             | Male Pipe NPTF Plug                                 | 60424 MJ-EJX45        | Male JIC 37° Flare to Female JIC 37° Flare – $45^{\circ}$ |
| 60110— MP-MP               | Male Pipe NPTF to Male Pipe NPTF                    | 60445 M.I-BKHD        | Male JIC 37° Flare to Male JIC 37° Flare Bulkhead         |
| 60115— MP-MP90             | Male Pipe NPTF to Male Pipe NPTF - 90°              | 60446 MJ-BKHD45       | Male JIC 37° Flare to Male JIC 37° Flare Bulkhead –       |
| 60130— MP-FPS              | Male Pipe NPTF to Female Pipe NPTF Reducer Bushing  |                       | 45°                                                       |
|                            | - Short                                             | 60447 M.I-BKHD90      | Male JIC 37° Flare to Male JIC 37° Flare Bulkhead –       |
| 60132— MP-FPL              | Male Pipe NPTF to Female Pipe NPTF Increasing       |                       | 90°                                                       |
|                            | Bushing – Long                                      | 60469MI_MI_MI         | Male IIC 37° Flare – Tee                                  |
| 60136— MP-FP90             | Male Pipe NPTF to Female Pipe NPTF - 90°            | 60470 MI-MI-FIX       | Male IIC 37° Flare on Run to Female IIC 37° Flare         |
| 60140- MP-FPX              | Male Pipe NPTF to Female Pipe Swivel NPSM           |                       |                                                           |
| 60142— MP-FPX45            | Male Pipe NPTF to Female Pipe Swivel NPSM – 45°     | 60471M IM IM IBKHD    | Male IIC 37° Flare on Run to Male IIC 37° Flare           |
| 60144 — MP-FPX90           | Male Pipe NPTF to Female Pipe Swivel NPSM – 90°     |                       | Rulkhead – Tee                                            |
| 60152— FP-FP               | Female Pipe NPTF to Female Pipe NPTF                | 60472 MI-MIRKHD-MI    | Male IIC 37° Elare to Male IIC 37° Elare Bulkhead to      |
| 60156— FP-FP90             | Female Pipe NPTF to Female Pipe NPTF – 90°          |                       | Male JIC 37° Flare – Tee                                  |
| 60160— FP-FPX              | Female Pipe NPTF to Female Pipe Swivel NPSM         | 60473 MI-F.IX-MI      | Male JIC 37° Flare to Female JIC 37° Flare Swivel to      |
| 60162— FP-FPX45            | Female Pipe NPTF to Female Pipe Swivel NPSM – 45°   |                       | Male JIC 37° Flare – Tee                                  |
| 60164— FP-FPX90            | Female Pipe NPTF to Female Pipe Swivel NPSM – 90°   | 60490- MJ-MP          | Male JIC 37° Flare to Male Pipe NPTF                      |
| 60181— FP-FP-FP            | Female Pipe NPTF – Tee                              | 60497— M.I-MP45       | Male JIC 37° Flare to Male Pipe NPTE – $45^{\circ}$       |
| 60183— FP-FP-MP            | Female Pipe NPTF on Run to Male Pipe NPTF – Tee     | 60499— MJ-MP90        | Male JIC 37° Flare to Male Pipe NPTE $-90^{\circ}$        |
| <b>60184</b> — FPX-FPX-FPX | Female Pipe Swivel NPSM – Tee                       | 60510- MJ-FP          | Male JIC 37° Flare to Female Pipe NPTF                    |
| 60186— FPX-FPX-MP          | Female Pipe Swivel NPSM on Run to Male Pipe NPTF –  | 60514 MJ-FP90         | Male JIC 37° Flare to Female Pipe NPTF $-90^{\circ}$      |
|                            | Tee                                                 | 60520— FJX-MP         | Female JIC 37° Flare Swivel to Male Pipe NPTF             |
| <b>60248</b> — OR          | O-Rings for Straight Thread Boss Fittings           | 60524— FJX-MP90       | Female JIC 37° Flare Swivel to Male Pipe NPTF - 90°       |
| 60250— MB-PLUG             | Male O-Ring Boss Plug                               | 60530— FJX-FP         | Female JIC 37° Flare Swivel to Female Pipe NPTF           |
| 60275— MB-FP               | Male O-Ring Boss to Female Pipe NPTF                | 60541 — MJBKHD-MP     | Male JIC 37° Flare Bulkhead to Male Pipe NPTF             |
| 60285— MB-FPX              | Male O-Ring Boss to Female Pipe Swivel NPTF         | 60551 — MJ-MJ-MP      | Male JIC 37° Flare on Run to Male Pipe NPTF - Tee         |
| 60287— MB-FPX45            | Male O-Ring Boss to Female Pipe Swivel NPTF – 45°   | 60650- MS-MP          | Male SAE 45° Flare to Male Pipe NPTF – Brass              |
| 60289— MB-FPX90            | Male O-Ring Boss to Female Pipe Swivel NPTF – 90°   | 60654 MS-MP90         | Male SAE 45° Flare to Male Pipe NPTF – Brass – 90°        |
| 60291— FB-MP               | Female O-Ring Boss to Male Pipe NPTF                | 60660                 | Male SAE 45° Flare to Female Pipe NPTF – Brass            |
| 60301— MB-MJ               | Male O-Ring Boss to Male JIC 37° Flare              | 60664- MS-FP90        | Male SAE 45° Flare to Female Pipe NPTF - Brass -90°       |
| 60308— MB-MJ45             | Male O-Ring Boss to Male JIC 37° Flare – 45°        | 60698- ORFF           | O-Rings for Flat Face Fittings                            |
| 60312— MB-MJ90             | Male O-Ring Boss to Male JIC 37° Flare – 90°        | 60701— FF-CAP         | Female Flat-Face O-Ring Cap                               |
| 60350— MJ-MJ-MB            | Male JIC 37° Flare on Run to Male O-Ring Boss – Tee | 60702 — MFFOR-PLUG    | Male Flat-Face O-Ring Plug                                |
| 60352— MB-MJ-MJ            | Male O-Ring Boss to Male JIC 37° Flare to Male JIC  | 60724 — MFFOR-FFORX90 | Male Flat-Face O-Ring to Female Flat-Face Swivel-90°      |
|                            | 37° Flare – Tee                                     | 60742 — MFFOR-MFFOR-  | <sup>o</sup>                                              |
| <b>60394</b> — TS          | Tube Sleeve                                         | FFORX                 | Male Flat-Face O-Ring on Run to Female Flat-Face          |
| 60395— TSN                 | Tube Sleeve Nut                                     |                       | Swivel – Tee                                              |
| 60399— LN                  | Locknuts for Bulkhead Fittings                      | 60770 — MFFOR-MP      | Male Flat-Face O-Ring to Male Pipe NPTF                   |
| 60401— FJ-CAP              | Female JIC 37° Flare Cap                            | 60800- MFFOR-MB       | Male Flat-Face O-Ring to Male O-Ring Boss                 |
| 60402— MJ-PLUG             | Male JIC 37° Flare Plug                             | 60801 — MFFOR-MBL     | Male Flat-Face O-Ring to Male O-Ring Boss - Long          |
| <b>60405</b> — MJ-FB0      | Male JIC 37° Flare to Female Braze-On               | 60805- MFFOR-MB45     | Male Flat-Face O-Ring to Male O-Ring Boss - 45°           |
|                            |                                                     |                       |                                                           |

C45

Gates Corporation





HOSE/CPLG.

### Gates Global Part Numbering System — Adapters (Continued)

#### **Thread Configurations (Continued)**

| mcau               | oomigurau                         | ons (continueu)                                                             |                                          |                                                                                                  | SELECTION    |
|--------------------|-----------------------------------|-----------------------------------------------------------------------------|------------------------------------------|--------------------------------------------------------------------------------------------------|--------------|
| 60810—<br>60820 —  | MFFOR-MB90<br>- MFFOR-            | Male Flat-Face O-Ring to Male O-Ring Boss – $90^{\circ}$                    | 62473 — MBSPPOR-<br>MFFOR45              | Male British Standard Pipe Parallel with O-Ring to Male                                          |              |
|                    | MFFOR-MB                          | Male Flat-Face O-Ring on Run to Male O-Ring Boss –                          |                                          | Flat-Face O-Ring – 45°                                                                           | GLOBALSPIRAL |
| 60821 -            | - MFFOR-MB-                       |                                                                             | 62475 — MBSPPOR-<br>MFFOR90              | Male British Standard Pipe Parallel with O-Ring to Male                                          | COUPLINGS    |
|                    | MFFOR                             | Male Hat-Face O-Ring to Male O-Ring Boss to Male<br>Flat-Face O-Ring – Tee  | 62500 — FBSPP-MP                         | Hat-Face 0-Ring – 90°<br>Female British Standard Pipe Parallel to Male Pipe                      | PCM/PCS      |
| 60880 -<br>60897 - | - FFURX-INJ<br>- FL-CAP           | Code 61 O-Ring Flange Cap                                                   | 62520 — FBSPP-FP                         | Female British Standard Pipe Parallel to Female Pipe                                             | FERRULES     |
| 60898 -            | - FLUK                            | Flange Fittings                                                             | 62550 — FBSPP-MJ                         | Ferale British Standard Pipe Parallel to Male JIC 37°                                            | MEGACRIMP    |
| 60900 -<br>60901   | - GENS<br>- FL-MJ<br>ELAK MI /    | Code 61 O-Ring Flange to Male JIC 37° Flare                                 | 62605 — FBSPPX-MP90                      | Finale British Standard Pipe Parallel Swivel to Male                                             | COUPLINGS    |
| 00501              | FL5K-MJ                           | Code 61 O-Ring Flange to Male JIC 37° Flare High                            | <b>62650</b> — FBSPPX-MJ                 | Female British Standard Pipe Parallel Swivel to Make                                             | DOWED        |
| 60905 —<br>60906—  | - FL-MJ45<br>FL 4K-MJ45/          | Code 61 O-Ring Flange to Male JIC 37° Flare-45°                             | <b>62660</b> — FBSPPX-FJX                | Female British Standard Pipe Parallel Swivel to Female                                           | CRIMP        |
|                    | FL5K-MJ45                         | Code 61 O-Ring Flange to Male JIC 37° Flare High                            | <b>62750</b> — FBSPPX-MJ                 | Female British Standard Pipe Parallel Swivel to Male                                             | COUPLINGS    |
| 60910 —<br>60911 — | - FL-MJ90<br>- FL 4K-MJ90 /       | Code 61 O-Ring Flange to Male JIC 37° Flare–90°                             | 62801 — FBFFOR-MJ<br>Metric Conversion   | Female British Flat-Face O-Ring to Male JIC 37° Flare                                            | LOW          |
|                    | FL5K-MJ90                         | Code 61 O-Ring Flange to Male JIC 37° Flare High                            | 63099 — MM-PLUG                          | Male Metric O-Ring Plug                                                                          | PRESSURE     |
| 60015              |                                   | Pressure – 90°                                                              | 63120 — MM-FP                            | Male Metric with O-Ring to Female Pipe NPTF                                                      | COUPLINGS    |
| 00313-             | FL5K-MFFOR                        | Code 61 O-Ring Flange to Male Flat-Face O-Ring High                         | 63150 — MM-MJ<br>63160 — MM-M 190        | Male Metric with O-Ring to Male JIC 37° Flare                                                    |              |
| 60920-             | EL/K-MEEOR/5/                     | Pressure                                                                    | 63350 — MDL-MJ                           | Male DIN 24° Cone – Light Series to                                                              | POLARSEAL    |
| 00020              | FL5K-MFF0R45                      | Code 61 O-Ring Flange to Male Flat-Face O-Ring High                         | <b>63450</b> — FDLX-MJ                   | Male JIC 37° Flare<br>Female DIN 24° Cone Swivel – Light Series to Male JIC                      | COUPLINGS    |
| 60925 —            | - FL4K-MFF0R90/<br>FL5K-MFF0R90   | Code 61 O-Ring Flange to Male Flat-Face O-Ring High                         | <b>63650</b> — MDH-MJ                    | 3/° Flare<br>Male DIN 24° Cone – Heavy Series to Male JIC 37°                                    | C14          |
| 60927 —            | - FLH-CAP                         | Pressure– 90°<br>Code 62 O-Ring Flange Cap                                  | <b>63750</b> — FDHX-MJ                   | Find Female DIN 24° Cone Swivel – Heavy Series to Male                                           | COUPLINGS    |
| 60929 -            | - FHHS                            | Flange Half Set (Code 62 - SAE J518)                                        | <b>63980</b> — MKB-PLUG                  | Male Kobelco Plug                                                                                | DOTO         |
| 60930 -            | - FLH6K-INJ                       | (6,000 PSI)                                                                 | <b>63990</b> — MKB-MJ                    | Male Kobelco to Male JIC 37° Flare                                                               | THERMO-      |
| 60935 —            | - FLH6K-MJ45                      | Code 62 O-Ring Flange Heavy to Male JIC 37° Flare –                         | International to Interna                 | tional                                                                                           | PLASTIC      |
| 60940              | - FLH6K-MJ90                      | Code 62 O-Ring Flange Heavy to Male JIC 37° Flare -                         | 64075 — BBDS<br>64094 — MBSPOR-PLUG      | British Bonded Seal<br>Male British Standard Pine Parallel with O-Bing Plug                      | COOPLINGS    |
| 60945 —            | - FLH6K-MFF0R/                    | Code 62 Q-Bing Flange Heavy to Male Flat-Face                               | 64095 — ORFBSPP                          | O-Rings for British Standard Parallel Pipe (BSPP<br>Couplings)                                   | FIELD        |
|                    |                                   | 0-Ring (6,000 PSI)                                                          | 64097 — FBSPP-CAP                        | Female British Standard Pipe Parallel Cap                                                        | ATTACHABLE   |
| 60950 —            | - FLH4K-MFFOR45/                  | Code 62 O-Bing Flange Heavy to Male Flat-Face                               | 64098 — MBSPT-PLUG<br>64099 — MBSPP-PLUG | Male British Standard Pipe Tapered Plug<br>Male British Standard Pipe Parallel Plug              | COUPLINGS    |
| C0055              |                                   | 0-Ring - 45° (6,000 PSI)                                                    | 64350 — MBSPP-FBSPPX                     | Male British Standard Pipe Parallel to Female British                                            |              |
| 60955 -            | FLH4K-IVIFFUR90/<br>FLH6K-MFF0R90 | Code 62 O-Ring Flange Heavy to Male Flat-Face                               | 64775 — MBDS                             | Metric Bonded Seal                                                                               | FIELD        |
| 60959—             | CATEHS                            | 0-Ring - 90° (6,000 PSI)<br>Caternillar-Style Flance Halve Sets             | 64780 — ORDINL                           | O-Rings for DIN Light Series (MegaCrimp® and<br>GlobalSpiral™ Couplings)                         | ATTACHABLE   |
| Dritich C          | onversion to C                    |                                                                             | 64781 — ORDINH                           | O-Rings for DIN Heavy Series (MegaCrimp® and<br>Global SpiralTM Countings)                       | COUPLINGS    |
| 62150 -            | - MRSPT-M.I                       | AC<br>Male British Standard Pine Tanered Thread to Male JIC                 | 64782 — ORDIN                            | O-Rings for DIN Heavy Series (PC, PCM & PCS                                                      |              |
| 02100              |                                   | 37° Flare                                                                   | 64787 — BS                               | Couplings)<br>Metric Bite Sleeve                                                                 | SURELOK AIR  |
| 62153 —            | - MBSPT-MJ45                      | Male British Standard Pipe Tapered Thread to Male JIC                       | 64788 — MNL                              | Metric Bite Nut – Light                                                                          | BRAKE        |
| <b>621</b> 55 –    | - MBSPT-MJ90                      | Male British Standard Pipe Tapered Thread to Male JIC                       | 64789 — MNH<br>64790 — MM-PLUG           | Metric Bite Nut – Heavy<br>Male Metric Plug                                                      | COUPLINGS    |
| 62200              | - MBSPP-MP                        | Male British Standard Pipe Parallel to Male Pipe NPTF                       | 64792 — MDL-PLUG<br>64793 — FDI -CAP     | Male DIN 24° Cone – Light Series Plug<br>Female DIN 24° Cone – Light Series Cap                  | OUTOK        |
| 62220 -            | - MBSPP-FP                        | Male British Standard Pipe Parallel to Female Pipe                          | 64794 — MDH-PLUG                         | Male DIN 24° Cone – Heavy Series Plug                                                            | DISCONNECT   |
| 62300 -            | -MBSPP-MJ                         | Male British Standard Pipe Parallel to Male JIC 37°                         | 64795 — FDH-CAP                          | Female DIN 24° Cone – Heavy Series Cap                                                           | COUPLERS     |
| 62305 —            | -MBSPP-MJ45                       | Male British Standard Pipe Parallel to Male JIC $37^{\circ}$                | 65097 — FJIS-CAP                         | Female Japanese Industrial Standard Cap                                                          | NEW BALL     |
| 62310 -            | -MBSPP-MJ90                       | Male British Standard Pipe Parallel to Male JIC $37^{\circ}$                | 65100 — FJIS-PLUG                        | viale Japanese Industrial Standard Plug<br>Female Japanese Industrial Standard to Male 37° Flare | VALVES       |
| 62320 -            | -MBSPP-FJX                        | Male British Standard Pipe Parallel to Female JIC 37°                       | 65599 — FK-CAP<br>65599 — MK-PLUG        | remaie komatsu Cap<br>Male Komatsu Plug                                                          | 4005000000   |
| <b>62450</b> –     | -MBSPPOR-MJ                       | Male British Standard Pipe Parallel with O-Ring to Male                     | 65700 — FK-MJ<br>65700 — MK-MK           | Male Komatsu to Male Komatsu                                                                     | ACCESSORIES  |
| <b>62460</b> –     | -MBSPPOR-MJ90                     | Male British Standard Pipe Parallel with O-Ring to Male                     | 65800 — MK-MJ<br>65800 — MK-FK90         | Male Komatsu to Female Komatsu – 90°<br>Male Komatsu to Female Komatsu – 90°                     | EQUIPMENT    |
| 62470—             | MBSPPOR-MFFOR                     | Male British Standard Pipe Parallel with O-Ring to Male<br>Flat-Face O-Ring |                                          | Tee                                                                                              | AND PARTS    |



The World's Most Trusted Name in Belts, Hose and Hydraulics.

www.gates.com/hydraulics



EQUIPMENT

HOSE/CPLG. SELECTION

GLOBALSPIRAL COUPLINGS

PCM/PCS FERRULES

MEGACRIMP COUPLINGS

POWER CRIMP COUPLINGS

LOW PRESSURE COUPLINGS

POLARSEAL COUPLINGS

C14 COUPLINGS

PCTS THERMO-PLASTIC COUPLINGS

FIELD ATTACHABLE G1 & G2 COUPLINGS

FIELD ATTACHABLE C5 COUPLINGS

SURELOK AIR BRAKE COUPLINGS

OLIICK DISCONNECT COUPLERS

NEW BALL VALVES ACCESSORIES

> EQUIPMENT AND PARTS

> > C47

**Gates Global Part Numbering System Quick Disconnect Couplers** 

Gates Quick Disconnect couplers feature a meaningful part number that makes coupling identification fast and easy. Always refer to Gates Cross Reference Charts when selecting a quick disconnect coupler for a competitive interchange. G940 Series - Agricultural Standard - Ball Valve

#### G94021-0808 **Body Style** Identification Assembly 0 Male Tip (Nipple) 1 Female Coupler 2 3 Repair Kit Coupling Body Letter Thread Thread Nominal 5 O-Ring Style Series Style Coupling Size Optional-Backup Ring 6 (see below) (see right) Size (Double Acting 8 Dust Plug (see right) Dust Cap 9 Sleeve)

#### **Thread Style**

- 0 Not Applicable
- Female Pipe 1
- 2 Female O-Ring Boss
- **Bulkhead Mounts** 3 Female British
- 4 Parallel Pipe

#### **Miscellaneous**

- D Double-Acting Sleeve
- Ρ Connect-Under-Pressure Option

| Coupling | Series | Indentification |
|----------|--------|-----------------|
| oouping  | 001100 | maomanoution    |

| MQBA             | Male Quick Disconnect Ball Agricultural                             |
|------------------|---------------------------------------------------------------------|
| FQBA(DA)         | Female Quick Disconnect Ball Agricultural<br>(Double Acting Sleeve) |
| G941 Series - Ag | ricultural Standard—Poppet Valve                                    |
| MQPA             | Male Quick Poppet Agricultural                                      |
| FQPA             | Female Quick Poppet Agricultural                                    |
| G942 Series - Jo | ohn Deere Old Style                                                 |
| MQBAJD           | Male Quick Ball Agricultural John Deere                             |
| FQBAJD           | Female Quick Ball Agricultural John Deere                           |
| G943 Series - In | ternational Harvester Old Style                                     |
| MQBAIHC          | Male Quick Ball Agricultural International Harvester                |
| G944 Series - J. | I. Case Old Style                                                   |
| MQBAJIC          | Male Quick Ball Agricultural J.I. Case                              |
| G945 Series - In | dustrial ISO 7241-1—Series B                                        |
| MQPI             | Male Quick Poppet Industrial                                        |
| FQPI             | Female Quick Poppet Industrial                                      |
| G949 Series - Fl | ush Face, HTMA                                                      |
| MQFF             | Male Quick Flush Face                                               |
| CPMQFF           | Male Quick Disconnect Flush Face<br>(Connect-Under-Pressure)        |
| FQFF             | Female Quick Flush Face                                             |
| CPFQFF           | Female Quick Disconnect Flush Face<br>(Connect-Under-Pressure)      |
| G950 Series - Hi | gh Pressure Flush Face                                              |
| MQFFH            | Male Quick Flush Face (High Pressure)                               |
| FQFFH            | Female Quick Flush Face (High Pressure)                             |

| G951 Series - W   | ing Nut                                      |
|-------------------|----------------------------------------------|
| MQW               | Male Quick Wing                              |
| FQW               | Female Quick Wing                            |
| G952 Series - Hi  | gh Pressure Wing Nut                         |
| MQWH              | Male Quick Wing (High Pressure)              |
| FQWH              | Female Quick Wing (High Pressure)            |
| G953 Series - Ve  | ery High Pressure Flush Face                 |
| MQFFVH            | Male Quick Flush Face (Very High Pressure)   |
| FQFFVH            | Female Quick Flush Face (Very High Pressure) |
| G956 Series - Inc | dustrial ISO 7241-1—Series A                 |
| MQP               | Male Quick Poppet                            |
| FQP               | Female Quick Poppet                          |
| G959 Series - Ag  | pricultural Adapters                         |
| MJD               | John Deere Old Style                         |
| MISO              | ISO Style                                    |
| MIHC              | International Harvester Style                |
| Miscellaneous     |                                              |
| DA                | Double Acting Sleeve                         |
| ISO               | Industrial Standards Organization            |
| DP                | Dust Plug                                    |
| DC                | Dust Cap                                     |
| DSO               | Double Shut Off                              |
| FP                | Female Pipe                                  |
| FB                | Female O-Ring Boss                           |
| QDAOR             | G940 Series O-Ring for Female Coupler        |
| QDIBR             | G945 Series Backup Ring for Female Coupler   |
| QDIOR             | G945 Series O-Ring for Female Coupler        |
| QDOR              | G956 Series O-Ring for Female Coupler        |
| QDBR              | G956 Series Backup Ring for Female Coupler   |
|                   |                                              |





Fates

The World's Most Trusted Name in Belts, Hose and Hydraulics.

www.gates.com/hydraulics

## **Coupling/Thread Configurations**

### GlobalSpiral<sup>™</sup> (GS) Couplings

GLOBALSPIRAL COUPLINGS

EQUIPMENT

HOSE/CPLG. SELECTION

for EFG6K, G6K, EFG5K, G5K, EFG4K, G4K, EFG3K and G3K Hose (Continued)



EQUIPMENT AND PARTS

C49

MGS-FDHORX

MGS-FBSPORX





Fates

The World's Most Trusted Name in Belts, Hose and Hydraulics.



for High and Medium Pressure Hoses (Continued)

## **Coupling/Thread Configurations**

### MegaCrimp<sup>®</sup> Couplings

globalspiral Couplings

HOSE/CPLG. Selection

PCM/PCS FERRULES Ð MEGACRIMP COUPLINGS G-MIX90 G-MFA G-NASP G-FABX G-MIX45 POWER CRIMP COUPLINGS LOW PRESSURE COUPLINGS G-MDL G-BJ G-FG G-FZX G-PWX POLARSEAL COUPLINGS C14 COUPLINGS G-FDLORX G-FDLORX45 G-FDLORX90 G-FFGX G-MDH PCTS THERMO-PLASTIC COUPLINGS FIELD ATTACHABLE G1 & G2 COUPLINGS G-FDHORX90 G-MBSPT G-FDHORX45 **G-FDHORX** G-MLSP FIELD ATTACHABLE C5 COUPLINGS SURELOK AIR BRAKE COUPLINGS G-FBSPORX90BL G-MBSPP **G-FBSPORX** G-FBSPORX45 G-FBSPORX90 Æ QUICK DISCONNECT COUPLERS NEW BALL VALVES G-FKX45 G-FKX90 G-FBFFX G-FKX G-FKX45M **G-FJISX** G-FKX90M ACCESSORIES EQUIPMENT AND PARTS

Gates Corporation

## Chemical Resistance Ratings for Gates Hose Polymers, Couplings and Adapter Materials

The Chemical Resistance Table lists the relative resistance of hose and coupling materials to more common chemicals. These ratings do not cover all possible variations of all factors, such as temperature, concentration, degradation or fluid contamination, etc. Testing under actual conditions is the best way to ensure chemical compatibility for critical applications.

For specific information, contact Gates Hose/ Connector Product Application, Denver, Colorado.

 $\mathbf{C}$ 

### **Rating Scale**

| "1" | Excellent resistance |
|-----|----------------------|
| "2" | Good resistance      |
| "X" | Not recommended      |
| "_" | Testing recommende   |

#### How to Use the Chemical Resistance Table

- 1. Chemicals are listed alphabetically.
- 2. Find the hose, coupling and adapter material type that has a resistance rating of "1" or "2" (See Rating Scale).
- 3. Find hose(s) with compatible polymer(s) in the Gates Hydraulic Hose Selection Guide.
- 4. Look for compatible couplings for the selected hose(s) by following the hose page references in the Selection Guide.

**NOTE:** O-Rings used with couplings also must be considered for chemical compatibility with the fluid to be conveyed. This includes couplings containing internal O-rings; for example, MPX (Male Pipe Swivel). Gates standard O-ring is made of Nitrile. If O-rings other than Nitrile are required, contact Gates Denver.









HOSE/CPLG. SELECTION

EQUIPMENT

AND PARTS

## **Hose & Coupling Section**

### **Chemical Resistance Table**

| SELECTION      | Rating Scale:<br>1 Excellent                  | Gates Hose Polymers |        |        |      |          |            |          | (<br>&    | Cou<br>Ac | ıplir<br>dapt | ngs<br>ters | ;      | Rating Scale:<br>1 Excellent | G                                                                | ate                                    | es H   | ose      | C<br>& | oup<br>Ada | oling<br>apte | gs<br>ers |        |        |      |          |        |          |
|----------------|-----------------------------------------------|---------------------|--------|--------|------|----------|------------|----------|-----------|-----------|---------------|-------------|--------|------------------------------|------------------------------------------------------------------|----------------------------------------|--------|----------|--------|------------|---------------|-----------|--------|--------|------|----------|--------|----------|
| GI OBAI SPIRAI | 2 Good resistance                             |                     |        | Tra    | de l | Vam      | ies        |          |           |           | 20            | 316         |        |                              | 2 Good resistance                                                |                                        |        | Trac     | de N   | am         | les           |           |        |        | 202  | 0        |        |          |
| COUPLINGS      | X Not recommended                             | А                   | С      | C₂     | J    |          |            | Z        |           | -         | <u>e</u> 3    | <u>el</u> 3 |        |                              | X Not recommended                                                | Α                                      | С      | $C_2$    | J      |            |               | Z         |        | -      | 19   | n<br>R   |        |          |
|                | <ul> <li>Testing recommended</li> </ul>       | e                   |        | Š      |      |          | only)      |          |           | Ste       | Ste           | Ste         | ε      |                              | <ul> <li>Testing recommended</li> </ul>                          | e                                      |        | Š        |        |            | only)         |           |        | Ste    | t St |          | Ε      |          |
| DOM/DOC        |                                               | Drer                | е      | e/P    |      | alon     | ating      |          | ا ء       | ő         | less          | lesa        | inu    | s                            |                                                                  | Drer                                   | e      | e/P      |        | lon        | ating         |           | _      | u<br>Q | less | Ω.       | nui    | s        |
| FERRIILES      |                                               | leol                | litril | litril | Ř    | N D      | over       | Ë        | 읽         | arb       | tain          | tain        | Jun    | sras                         | o                                                                | leo                                    | litril | litril   | Ц      | ž          |               | Ë         | 읫      | arb    | tain |          | un .   | sras     |
| I LIIIIOLLO    | Chemical Name                                 | 2                   | 2      | 2      | 0    | <u> </u> | <u>)</u> © | <u>a</u> | 2         | 0         | S             | S           | ۹      | ш                            | Chemical Name                                                    | 2                                      | 2      | 2        | 0      | <u> </u>   | ್ರಿ           | <u>n</u>  | 2      | 0      | ŝ    | <u> </u> |        | <u>ш</u> |
|                | Α                                             |                     |        |        |      |          |            |          |           |           |               |             |        |                              | Ammonium Chloride, 10% Boiling<br>Ammonium Chloride, 28% Boiling | X                                      | X<br>X | -        | -      | 2          | -             | 1         | X      | X<br>X | 2    | 2<br>2   | X<br>X | X<br>X   |
| MEGACRIMP      | Absorption Oil                                | 2                   | 1      | 2      | 1    | 2        | -          | 1        | 1         | _         | -             | -           |        | 1                            | Ammonium Chloride, 50% Boiling                                   | X                                      | Х      | -        | -      | -          | -             | 1         | X      | Х      | 2    | 2        | Х      | Х        |
| COUPLINGS      | Acetaldehyde                                  | X                   | X      | Х      | -    | X        | 1          | 1        | 2         | 1         | 1             | 1           | 1      | 1                            | Ammonium Hydroxide                                               | 2                                      | 2      | 2        | 1      | 1          | Х             | 1         | 1      | 2      | 1    | 1        | -      | Х        |
|                | Acetamide                                     | 1                   | 2      | -      | -    | -        | Х          | 1        | -         | -         | -             | -           | -      | -                            | Ammonium Hydroxide, 3 Molar                                      | 1                                      | Х      | -        | -      | -          | 2             | 1         | -      | Х      | 2    | 2        | Х      | Х        |
| POWER          | Acetic Acid, 5-20%                            | 2                   | X      | 2      | 1    | 2        | Х          | 1        | 1         | X         | 2             | 2           | 2      | X                            | Ammonium Hydroxide, Concentrated                                 | $\begin{vmatrix} 1 \\ 2 \end{vmatrix}$ | 2      | 2        | -      | 2          | -             | 1         | -      | 1      | 2    | 2<br>1   | X      | -        |
| CRIMP          | Acetic Acid. 30%                              | 2                   | X      | -      | 1    | -        | 2          | 1        | $\hat{2}$ | X         | 2             | 2           | 2      | x                            | Ammonium Nitrate, Fertilizer                                     | 1                                      | 2      | 1        | 1      | 1          | 1             | 1         | Х      | 1      | 1    | 1        | 2      | Х        |
| COUPLINGS      | Acetic Acid, 50%                              | 2                   | Х      | 2      | 1    | -        | -          | 1        | 2         | Х         | 2             | 2           | 2      | Х                            | Ammonium Nitrite                                                 | 1                                      | 1      | -        | -      | -          | -             | -         | 1      | 2      | 1    | 1        | Х      | -        |
|                | Acetic Acid, 50% Boiling                      | X                   | Х      | -      | -    | -        | -          | 1        | Х         | Х         | Х             | 2           | -      | -                            | Ammonium Persulfate                                              | X                                      | Х      | Х        | 1      | -          | Х             | -         | X      | Х      | 2    | 2        | Х      | Х        |
| IOW            | Acetic Acid, 80%                              | X                   | Х      | -      | -    | -        | -          | 1        | X         | Х         | 2             | 2           | 2      | X                            | Ammonium Persulfate, 5%                                          |                                        | X<br>X | -        | -      | 2          | ×             | 2         | X      | X<br>X | 2    | 2        | X<br>X | X<br>X   |
| PRESSURE       | Acetic Acid, 80% Bolling<br>Acetic Acid, 100% | X                   | X      | -      | -    | -        | 2          | 1        | X         | X         | X             | 2           | ×<br>2 | X                            | Ammonium Phosphate                                               | '                                      | ~      |          |        |            | ~             |           |        | ~      | 2    | -        | ~      | ~        |
| COUPLINGS      | Acetic Acid, 100% Boiling                     | X                   | X      | -      | -    | -        | Х          | 1        | X         | X         | X             | 2           | -      | X                            | (Mono, Di, Tri, Basic)                                           | 1                                      | 1      | 1        | 1      | 1          | 1             | 1         | 2      | Х      | 2    | 2        | Х      | -        |
|                | Acetic Acid, 100% (Hot) Vapors                | 2                   | 2      | -      | -    | -        | -          | -        | Х         | Х         | Х             | 2           | 2      | Х                            | Ammonium Sulfate                                                 | 1                                      | 2      | 1        | 1      | 1          | 1             | 1         | Х      | Х      | Х    | 2        | Х      | Х        |
|                | Acetic Acid, Air Free                         | -                   | -      | -      | -    | -        | -          | 1        | -         | Х         | Х             | Х           | -      | Х                            | Ammonium Thiocyanate                                             |                                        | 1      | -        | 1      | 1<br>v     | -             | 1         | -      | 1      | 1    | 1        | -<br>V | -<br>2   |
| POLARSEAL      | Acetic Acid, Annydride                        | X                   | X      | X      | 1    | 2        | 1          | 1        | X         | X<br>Y    | 2             | 2           | 2      | X<br>Y                       | Amyl Alcohol                                                     | 2                                      | 2      | 2        | 1      | -          | -             | 1         | 1      | 1      | 1    | 1        | 1      | 1        |
| COUPLINGS      | Acetic Acid, Arealed                          | X                   | Х      | -      | _    | _        | -          | 1        | 1         | X         | 2             | 1           | 2      | X                            | Amyl Borate                                                      | 2                                      | 2      | 2        | -      | -          | -             | -         | -      | -      | -    | -        | -      | -        |
|                | Acetic Acid, Glacial                          | X                   | Х      | Х      | 1    | Х        | Х          | 1        | Х         | Х         | 2             | 2           | 2      | -                            | Amyl Chloride                                                    | X                                      | -      | Х        | 2      | Х          | -             | 1         | 2      | -      | 1    | 1        | -      | -        |
| C14            | Acetone (Dimethylketone)                      | Х                   | Х      | Х      | 1    | Х        | Х          | 1        | 1         | 1         | 1             | 1           | 1      | 1                            | Amyl Chloronaphthalene                                           | X                                      | X      | X        | -      | X          | -             | 1         | -      | -      | 1    | 1        | -      | -        |
| COUPLINGS      | Acetonitrile (Methyl Cyanide)                 | 2                   | X      | 2      | 1    | 2        | -          | -        | -         | - 1       | - 1           | -           | - 1    | -                            | Amyl Phenol                                                      | ^                                      | -      | -        | -      | -          | -             | 1         |        | -      | 1    | 1<br>1   | -      | -        |
|                | Acrylonitrile (Vinyl Cvanide)                 | X                   | X      | X      | 1    | x        | -          | -        | -         | 1         | 1             | 1           | 2      | 1                            | AN-0-3 Grade M                                                   | 1                                      | 1      | -        | -      | -          | -             | -         | -      | -      | -    | -        | -      | -        |
| PCTS           | Aero Lubriplate                               | 1                   | 1      | -      | -    | -        | -          | -        | -         | 1         | 1             | 1           | 1      | -                            | AN-0-6                                                           | 1                                      | 1      | -        | -      | -          | -             | -         | -      | -      | -    | -        | -      | -        |
| THERMO-        | Aero-Safe 2300                                | X                   | Х      | -      | -    | -        | Х          | -        | -         | 1         | 1             | 1           | 1      | 1                            | AN-0-366                                                         | 1                                      | 1      | -        | -      | -          | -             | -         | -<br>V | -      | -    | -        | -      | -        |
| PLASTIC        | Aeroshell Type 1A, 1AC, 4                     | 2                   | 1      | -      | -    | -        | 1          | -        | -         | -         | -             | -           | -      | -                            | Anderol, L-774 (Diester)<br>Anderol, L-826 (Diester)             | X                                      | 2      | -        | -      | 2          | -             | 1         | X      | -      | 2    | -        | 2      | 2        |
| COUPLINGS      | Aeroshell 17 Grease                           | 2                   | 1      | 2      | -    | -        | X          | -        | -         | 1         | 1             | 1           | 1      | 2                            | Anderol, L-829 (Diester)                                         | X                                      | 2      | -        | -      | -          | -             | 1         | X      | -      | -    | -        | -      | -        |
|                | Aeroshell 750                                 | X                   | 2      | -      | -    | -        | Х          | -        | -         | 1         | 1             | 1           | 1      | -                            | ANG-25 (Glyceral Ester)                                          | 2                                      | 2      | -        | -      | -          | -             | 1         | 2      | -      | -    | -        | -      | -        |
|                | Air, Ambient                                  | 1                   | 1      | 1      | 1    | 1        | 1          | 1        | 1         | 1         | 1             | 1           | 1      | 1                            | ANG-25 (Diester Base, TG749)                                     | X                                      | 2      | -        | -      | -          | -             | 1         | X      | 1      | 1    | 1        | 1      | -        |
| ATTACHABLE     | Air, 150°F                                    | 1                   | 1      | 1      | 1    | 1        | 1          | 1        | 1         | 1         | 1             | 1           | 1      | 1                            | Aniline<br>Aniline Dves                                          |                                        | X      | X        | 2      | ×          | X<br>-        | 1         | 2      | 2      | 1    | 1<br>1   | Х<br>2 | X<br>X   |
| G1 & G2        | AIF, 180°F<br>Air 200°F                       |                     | 2      | 2      | 1    | 2        | 2          | 1        | 2         | 1         | 1             | 1           | 1      | 1                            | Aniline Hydrochloride                                            | X                                      | Х      | -        | 2      | -          | -             | 1         | -      | X      | 1    | 1        | -      | -        |
| COUPLINGS      | Aircraft Hyd. Oil AA                          | -                   | 1      | -      | -    | -        | -          | -        | -         | 1         | 1             | 1           | 1      | 1                            | Animal Gelatin                                                   | 1                                      | 1      | -        | 1      | -          | -             | 1         | -      | -      | 1    | 1        | -      | -        |
|                | Alcohol                                       | 1                   | 1      | -      | -    | -        | -          | 1        | -         | 1         | 1             | 1           | 1      | 1                            | Animal Fats                                                      | 2                                      | 1      | -        | 1      | -          | -             | 1         | 1      | 1      | 1    | 1        | 1      | Х        |
|                | Alcohol, Amyl                                 | 2                   | 2      | -      | -    | -        | -          | 1        | 1         | -         | 2             | 1           | 2      | -                            | Animal UII (Lard UII)                                            | 2                                      | 1      | - 2      | 1      | -          | -             | 1         | -      | 1      | 1    | 1        | 1      | -        |
| FIELD          | Alcohol, Benzyl<br>Alcohol, Butyl             |                     | X<br>X | - 2    | 1    | 2        | 2          | 1        | -         | 1         | 1             | 1           | - 1    | - 1                          | Antifreeze, Glycol Base                                          | 2                                      | 1      | 1        | 1      | 1          | _             | 1         | 1      | 1      | 1    | 1        | 1      | 1        |
| C5             | Alcohol, Denatured                            | 1                   | 1      | -      | -    | 1        | -          | 1        | 1         | 1         | 1             | 1           | 1      | 1                            | Antimony Chloride, 50%                                           | -                                      | 1      | -        | -      | -          | -             | 1         | Х      | Х      | Х    | Χ        | -      | -        |
| COUPLINGS      | Alcohol, Diacetone                            | ·                   | Х      | -      | -    | 2        | -          | 1        | -         | 1         | 1             | 1           | 1      | 1                            | AN-VV-0-366B Hydraulic Fluid                                     | 1                                      | -      | -        | -      | -          | -             | -         | 2      | -      | -    | -        | -      | -        |
|                | Alcohol, Ethyl (Ethanol)                      | 1                   | 1      | 1      | 1    | 1        | 2          | 1        | 1         | 1         | 1             | 1           | 1      | 2                            | Aqua Regia (Concentrated)                                        | X                                      | X<br>1 | X        | 2      | X          | X             | 1         | X      | X      | Χ.   | X<br>-   | X      | -        |
|                | Alcohol, Furfural<br>Alcohol, Heyyl (Heyanol) | 2                   | X<br>1 | X      | 1    | 2        | 2          | 1        | -         | 2         | 1             | 1           | 1      | 1                            | Arco C2, 100                                                     |                                        | 1      | _        | _      | -          | _             | _         | _      | _      | _    | -        | -      | -        |
| SURELOK AIR    | Alcohol, Isobutyl                             | 2                   | 2      | -      | -    | 1        | -          | 1        | 1         | 1         | 1             | 1           | 1      | 2                            | Aromatic Fuel 30%, Mil.                                          | -                                      | -      | -        | -      | -          | -             | 1         | -      | -      | -    | -        | -      | -        |
|                | Alcohol, Isopropyl (Isopropanol)              | 2                   | 2      | 2      | -    | 2        | 2          | 1        | 1         | 1         | 1             | 1           | 1      | 2                            | Aromatic Fuel 50%                                                | X                                      | 2      | -        | -      | -          | -             | 1         | -      | -      | -    | -        | -      | -        |
| GOOFLINGS      | Alcohol, Methyl (100%) (Methanol)             | 1                   | 1      | 1      | 1    | 1        | -          | 1        | 1         | 1         | 1             | 1           | 1      | 2                            | Aromatic Hydrocarbons                                            | X                                      | Х      | -        | - 1    | Х          | 2             | 1         | -      | 2      | 1    | 2        | 2      | 2        |
|                | Alcohol, Methyl (6%)                          | 1                   | 1      | 1      | -    | 1        | -          | 1        | 1         | 1         | 1             | 1           | 1      | 2                            | Askarel, Transformer Oil                                         | X                                      | x      | x        | -      | x          | -             | 1         |        | 1      | 1    | 1        | -      | 1        |
| QUICK          | Alcohol, Propyl                               |                     | 1      | -      | _    | _        | _          | 1        | x         | 2         | 1             | 1           | 1      | 1                            | Asphalt, Under 180°F                                             | 2                                      | 2      | 2        | Х      | Х          | 1             | 1         | -      | 1      | 1    | 1        | -      | 2        |
| DISCONNECT     | Alkazene                                      | X                   | Х      | Х      | -    | Х        | Х          | -        | -         | 1         | 1             | -           | -      | -                            | Asphalt, Cut Back                                                | X                                      | 2      | 2        | -      | Х          | 1             | 1         | 1      | 1      | 1    | 1        | 2      | 2        |
| COUPLERS       | Aluminum Chloride                             | 1                   | 1      | 1      | 1    | 1        | 2          | 1        | Х         | Х         | 2             | 2           | Х      | Х                            | Asphalt, Topping                                                 |                                        | X      | -        | -      | -          | -             | 1         | -      | 1      | 1    | 1        | - 1    | -<br>1   |
|                | Aluminum Fluoride                             |                     | 1      | 1      | 1    | 1        | 2          | 1        | X         | Х         | 2             | 2           | 2      | X<br>1                       | ASTM OILNO.                                                      | $\begin{vmatrix} 1\\ 2 \end{vmatrix}$  | 2      | 1        | -      | 2          | 2             | 1         | 1      | 1      | 1    | י<br>1   | י<br>1 | 1<br>1   |
| NEW BALL       | Aluminum Hydroxide Saturated                  |                     | 1      | -      | -    | -        | 2          | 1        | 1         | -         | 1             | 1           | -      | -                            | ASTM Oil No. 3                                                   | X                                      | 1      | X        | Х      | X          | -             | 1         | 1      | 1      | 1    | 1        | 1      | 1        |
| VALVES         | Aluminum Nitrate                              | 1                   | 1      | 1      | 1    | 1        | 2          | 1        | -         | Х         | 1             | 1           | 2      | -                            | ASTM Oil No. 4                                                   | X                                      | 2      | -        | -      | -          | -             | 1         | -      | 1      | 1    | 1        | 1      | -        |
|                | Aluminum Sulfate                              | 1                   | 1      | 1      | 1    | 1        | Х          | 1        | 1         | Х         | Х             | 2           | Х      | Х                            | ASTM Reference Fuel A                                            | 2                                      | 1      | 1        | 1      | 1          | -             | 1         | 1      | 1      | 1    | 1        | 1      | 1        |
| 100500000      | Alums (Ammonium or Potassium)                 | 1                   | 1      | 1      | 1    | 1        | -          | 1        | -         | Х         | 2             | 2           | Х      | Х                            | ASTM Reference Fuel C                                            | (2)<br>v                               | 1      | (2)<br>V | 2      | X<br>Y     | -             | 1         |        | 1      | 1    | 1<br>1   | 1      | 1        |
| ACCESSORIES    | Ammonium Carbonate                            | <sup>1</sup>        | 2      | -      | -    | -        | 2          | -        | 1         | - 1       | 1             | 1           | 2      | X<br>-                       | ATL-857                                                          | Â                                      | 2      | -        | -      | -          | -             | -         | _      | -      | -    | -        | -      | -        |
|                | Ammonium Chloride, 1%                         | X                   | 2      | 1      | 1    | 1        | 1          | 1        | 1         | X         | 2             | 2           | Х      | Х                            | Atlantic Dominion F                                              | 2                                      | 1      | -        | -      | -          | -             | -         | -      | -      | -    | -        | -      | -        |
| FOUNDATION     |                                               |                     |        |        |      |          |            |          | _         |           |               |             |        |                              |                                                                  |                                        | _      |          |        |            |               |           |        |        |      |          |        |          |

Ocover stock rating only; Rating for tube stock "X" \*Use Gates fuel hose or contact Denver Product Applications Department.





### **Chemical Resistance Table**

| Rating Scale:                             | -     | Gat    | tes    | Ho   | se F       | Poly  | me     | 'S     |       | Coi<br>& A | upli<br>dap | ngs<br>oters | -    |   | Rating Scale:                                    | (       | Gat    | tes      | Но                | se       | Pol        | yme             | ers        | 8         | Coi<br>& Ac | uplir<br>dapt | ngs<br>ters | ;      | - | SELECTION    |
|-------------------------------------------|-------|--------|--------|------|------------|-------|--------|--------|-------|------------|-------------|--------------|------|---|--------------------------------------------------|---------|--------|----------|-------------------|----------|------------|-----------------|------------|-----------|-------------|---------------|-------------|--------|---|--------------|
| 2 Cood registered                         |       |        | Tra    | ade  | Na         | me    | s      |        |       | 4          | 9           |              |      | - | Cood registance                                  |         |        | Т        | rade              | e Na     | ame        | s               |            | $\square$ | 4           | 9             |             |        | - |              |
| X Not recommended                         | A     | С      | C.     | 1    |            |       |        | 7      | 1     | 30         | 31          |              |      |   | X Not recommended                                | Α       | С      | C        | 2]                |          |            |                 | 7          | 1         | 30          | 31            |             |        |   | GLOBALSPIRAL |
| <ul> <li>Testing recommended</li> </ul>   |       | -      | 0      |      |            | 14    | -      | _      | teel  | Stee       | Stee        | _            |      |   | <ul> <li>Testing recommended</li> </ul>          | -       | -      | <u> </u> | )                 |          |            | ş               | -          | teel      | Stee        | Stee          | _           |        |   | GOUPLINGS    |
| <ul> <li>resulting recommended</li> </ul> | prene | e      | le/PV( |      | alon       | hane  |        | Ę      | on St | less (     | less (      | minum        | ŝ    |   | - resung recommended                             | prene   | e      |          | . 16/1            |          | hane       | rating or       | u 5        | on St     | less (      | less (        | ninum       | ş      |   | PCM/PCS      |
| Chemical Name                             | Neo   | Nitri  | Nitri  | ä    | Hyp<br>Hyp | Uret  | PTF    | N      | Cart  | Staii      | Staiı       | Alur         | Bras |   | Chemical Name                                    | Neo     | Nitri  | Nite     |                   | בי בי    | Uret<br>U  |                 |            | Cart      | Staiı       | Staiı         | Alur        | Bras   |   | FERRULES     |
| Aurex 903R (Mobil)                        | 2     | 1      | -      | -    | -          | -     | -      | -      | -     | -          | -           | -            | -    | - | C                                                |         |        |          |                   | -        |            | -               |            |           | -           | -             |             |        | - |              |
| Automatic Brake Fluid                     | 2     | Х      | -      | -    | -          | -     | 1      | -      | 1     | 1          | 1           | 1            | -    |   | Calcium Acetate                                  | X       | X      | )        |                   | 1        | X          |                 | 1 -        | 2         | 2           | 2             | X           | 1      |   | MECACDIMD    |
| Automatic Transmission Fluid - ATF        | 2     | 1      | -      | 1    | -          | -     | 1      | -      | 1     | 1          | 1           | 1            | -    |   | Calcium Arsenate                                 | -       | -      |          |                   |          |            |                 | 1 1        | -         | -           | -             | -           | -      |   |              |
| Aviation Gasoline, Mil.                   | -     | 2      | -      | -    | -          | -     | -      | -      | 1     | 1          | 1           | 1            | -    |   | Calcium Bisulfate                                | 1       | 1      | 2        | 2 -               | 1        | 1          |                 | 1 -        | -         | 2           | 1             | -           | Х      |   |              |
| Baltic Types 100, 150, 200, 300, 500      |       | 1      | -      | -    | -          | -     | 1      | -      | -     | -          | -           | -            | _    |   | Calcium Bisulfide                                | 1       | 1      | 2        | 2 1               |          | 1 '        | 1               | 1 -        | -         | 2           | 2             | Х           | Х      |   |              |
| Banvel, Concentrated (Ag Spray)           |       | -      | -      | -    | -          | -     | 1      | 1      | -     | -          | 1           | -            | -    |   | Calcium Carbonate                                | 1       | 1      | 1        | 1 -               | 1        | 1 ·        |                 | 11         |           | 1           | 1             | 1<br>Y      | X<br>1 |   | POWER        |
| Bardol B                                  | X     | Х      | Х      | -    | Х          | -     | 1      | -      | 1     | 1          | 1           | -            | -    |   | Calcium Chlorate                                 |         | 1      | 1        | 1.                |          | 1.         |                 | 1 -        | 2         | 2           | 1             | 1           | -      |   | CRIMP        |
| Barium Carbonate                          | 1     | 1      | 1      | 1    | 1          | -     | 1      | 1      | 2     | 1          | 1           | Х            | 1    |   | Calcium Chloride                                 | 1       | 1      | 1        | 1 1               | 1        | 1 .        |                 | 1 1        | X         | 2           | 1             | X           | -      |   | COUPLINGS    |
| Barium Chloride                           | X     | 1      | 1      | 1    | 1          | 1     | 1      | 1      | X     | 2          | 2           | Х            | 2    |   | Calcium Hydroxide                                | 1       | 2      | 2        | 2 -               |          | 1)         | < ·             | 1 -        | X         | Х           | 1             | -           | 2      |   |              |
| Barium Chloride, 5%                       | ľ     | 1      | -      | -    | -          | -     | 1      | X      | 2     | I          | 1           | X            | -    |   | Calcium Hydroxide, 10% Boiling                   | -       | 2      |          |                   |          | -          |                 | 1 X        | 2         | 1           | 1             | Х           | Х      |   | LOW          |
| Solution (Hot)                            | X     | 1      | -      | -    | -          | -     | 1      | Х      | 2     | 2          | 2           | Х            | -    |   | Calcium Hydroxide, 20% Boiling                   | 1.1     | -      |          |                   |          | -          | •               | 1 X        | -         | 1           | 1             | Х           | Х      |   | PRESSURE     |
| Barium Hydroxide                          | 1     | 1      | 1      | 1    | 1          | Х     | 1      | 1      | X     | 1          | 1           | Х            | Х    |   | Calcium Hypochlorite 5%                          | 1.1     | -      |          |                   | -        | -          | -               |            | -         | Χ           | 2             | X           | Χ      |   | COUPLINGS    |
| Barium Sulfate                            | 1     | 1      | -      | 1    | 2          | -     | 1      | 1      | 2     | 1          | 1           | 2            | 2    |   | (Under 100°F)                                    | X       | 2      | )        | < -               |          | 2          |                 | 1 X        | X         | Х           | 2             | х           | Х      |   |              |
| Barium Sulfate, Aqueous                   |       |        |        |      |            |       |        |        |       |            |             |              |      |   | Calcium Hypochlorite, 15%                        |         | -      |          | -                 |          | -          |                 |            |           |             | -             |             |        |   |              |
| Solution (Hot)                            | X     | -      | -      | -    | -          | -     | 1      | X      | 2     | 1          | 1           | 2            | -    |   | (Under 100°F)                                    | X       | -      | )        | < 1               |          | 2          |                 | 1 X        | -         | Х           | 2             | Х           | Х      |   | POLARSEAL    |
| Banum Sumue<br>Bavol D                    |       | 1      | -      | -    | -          | -     | -      | 2      |       | -          | -           | ~            | ~    |   | Calcium Nitrate                                  | 1       | 1      | 1        | 1 1               | 1        | 1          |                 | 1 1        | X         | 2           | 2             | Х           | 1      |   | COUPLINGS    |
| Bayol 35                                  |       | 1      | -      | -    | -          | -     | -      | -      | -     | -          | -           | -            | -    |   | Calcium Silicate                                 | -       | 2      |          | - 1               |          | 2          | -               | 1 -        | 1         | 1           | 1             | 1           | 1      |   |              |
| Beet Sugar Liquors                        | X     | 1      | 1      | 1    | 1          | Х     | 1      | -      | 2     | 2          | 2           | 2            | Х    |   | Calcium Sulfide                                  |         | 2      |          |                   | 1        |            |                 | 1 -<br>1 2 | 2         | 1           | 1             | 2           | -      |   | C14          |
| Bellows 80-20 Hydraulic Oil               | -     | 1      | -      | -    | -          | 2     | 1      | -      | -     | -          | -           | -            | -    |   | Caliche Liquors                                  |         | 2      |          |                   |          | 1 .        |                 | 1 -        | 1         | 1           | 1             | -           | -      |   |              |
| Benzaldehyde                              | X     | Х      | Х      | 2    | X          | 1     | 1      | 1      | 1     | 1          | 1           | 1            | 1    |   | Cane Sugar Liquors                               | 1       | 1      | 2        | 2 -               | 1        | -          |                 | 1 -        | 1         | 1           | 1             | 1           | 2      |   | COOL FILLING |
| Benzene, Benzol<br>Benzene Sulfenie Acid  |       | Х      | Х      | Х    | X          | 2     | 1      | 1      |       | 1          | 1           | 1            | 1    |   | Carbolic Acid, Phenol                            | Х       | Х      | )        | < -               | 1        | X          | < .             | 1 X        | X         | 1           | 1             | 2           | Х      |   |              |
| Benzine Petroleum Ether                   | Î     | 2      | ×      | 1    | -          | 2     | 1      | -      |       | - 1        | 2           | 1            | 1    |   | Carbon Dioxide, Dry                              | 2       | 1      | 1        | 1 1               |          | 1 '        | 1               | 1 -        | 1         | 1           | 1             | 1           | 1      |   | PCTS         |
| Benzoic Acid 21°C (70°F)                  | X     | X      | X      | 1    | -          | -     | 1      | -      | 1     | 1          | 1           | 1            | 1    |   | Carbon Dioxide, Wet                              | 2       | 1      | 1        | 1                 | <br>> ·  | 1 ·<br>v · |                 | l -<br>1 1 | 1         | 1           | 1             | 1           | 1<br>V |   | THERMO-      |
| Benzol                                    | X     | Х      | Х      | Х    | -          | -     | 1      | 1      | 1     | 1          | 1           | 1            | 1    |   | Carbon Monoxide Under                            |         | ^      |          | - 4               | <u> </u> | ^ 4        | -               |            | 2         |             |               | 2           | ^      |   | PLASTIC      |
| Benzyl Alcohol                            | X     | Х      | -      | 1    | -          | -     | 1      | Х      | 1     | 1          | 1           | 1            | -    |   | 150°F (Hot)                                      | 2       | 2      | 2        | 2 -               | 1        | 1          |                 | 1 2        | 1         | 1           | 1             | 1           | 1      |   | COUPLINGS    |
| Benzyl Benzoate                           | -     | -      | -      | -    | -          | -     | 1      | -      | 1     | 1          | 1           | -            | -    |   | Carbon Tetrachloride, 5%-10%                     | -       | -      |          |                   |          | -          |                 | 1 -        | -         | Х           | -             | -           | -      |   |              |
| Benzyl Unioriae<br>Biodiesel**            | X     | X      | X      | X    | -          | -     | 1      | 2      |       | - 1        | - 1         | -            | -    |   | Carbon Tetrachloride, Pure                       | X       | Х      | )        | Κ 2               | 2        | XX         | < .             | 1 X        | X         | Х           | 2             | 2           | 2      |   | FIFI D       |
| Bismuth Carbonate                         | X     | -      | -      | -    | -          | -     | 1      | -      | 1     | 1          | 1           | -            | -    |   | Carbonic Acid                                    | 1       | 1      | 1        | 1 1               |          | 1 )        | < ·             | 1 -<br>1 1 |           | 1           | 1             | 2           | X      |   | ATTACHABLE   |
| Black Point 77                            | -     | 1      | -      | -    | -          | -     | -      | -      | -     | -          | -           | -            | -    |   | Caustic Soda 20%                                 | 2       | X      | 2        | < -               | 1        | 24         | <u>~</u><br>~ · | 1 1<br>1 2 | 2         | 1           | 1             | X           | X      |   | G1 & G2      |
| Black Sulfate Liquor                      | 2     | 2      | 2      | 2    | 2          | -     | 1      | 1      | 1     | 1          | 1           | -            | 1    |   | Caustic Soda, 50%                                | 2       | X      | ý        | κ ·               |          | 1)         | <u>`</u>        | 1 2        | 2         | 1           | 1             | X           | Х      |   | COUPLINGS    |
| Blast Furnace Gas                         | X     | Х      | Х      | -    | Х          | Х     | 1      | -      | 1     | 1          | 1           | 2            | 1    |   | Cellosolve Acetate, Under 100°F                  | X       | Х      | )        | < 2               | 2        | Х          |                 | 1 -        | 2         | 2           | 2             | 1           | -      |   |              |
| Borax, Sodium Borate<br>Bordeaux Mixture  |       | 2      | 2      | 1    | 1          | 1     | 1      | X<br>1 | 2     | 1          | 1           | X<br>1       | 2    |   | Cellosolve, Butyl, Under 100°F                   | X       | Х      | )        | < .               |          | Х          |                 | 1 -        | 2         | 2           | 2             | 2           | -      |   |              |
| Boric Acid                                |       | 1      | 1      | -    | 1          | 1     | 1      | X      | X     | 2          | 2           | 1            | X    |   | Cellosolve, Union Carbide,                       |         | v      |          |                   |          |            |                 |            |           | ~           | 0             | 0           |        |   | FIELD        |
| Boron Fuels, HEF                          | X     | Х      | -      | -    | -          | -     | -      | -      | -     | -          | -           | -            | -    |   | Cellugard Cellugard 200                          |         | X<br>1 |          |                   |          | -          |                 | I -<br>1 - | 2         | 2           | 2             | 2           | 1      |   | C5           |
| Brake Fluid, Petroleum Base               | 2     | 1      | 2      | 1    | Х          | -     | 1      | -      | 1     | 1          | 1           | -            | 1    |   | Cellulube 90, 150, 220, 300, 550                 | X       | X      | )        | ζ.                | -        | Х          |                 | '<br>1 -   | 1         | 1           | 1             | 1           | 1      |   | COUPLINGS    |
| Brake Fluid, Synthetic Base               | X     | Х      | Х      | 1    | Х          | -     | 1      | 1      | 1     | 1          | 1           | 1            | 1    |   | Cellulube 1000, 220A, ST220, A60                 | X       | Х      | )        | < .               | -        | Х          |                 | 1 -        | 1         | 1           | 1             | 1           | 1      |   | COOL FILLING |
| Bray 66 - 130<br>Brayco 719-r (M/-H-010)  |       | 2      | -      | -    | -          | -     | 1      | -      | -     | -          | -           | -            | -    |   | Cellutherm 2505A                                 | Х       | 2      |          |                   | -        | -          |                 |            | -         | -           | -             | -           | -      |   |              |
| Brayco 885 (MII -1 -6085A)                | X     | 2      | -      |      |            |       | -      | -      |       |            | -           | -            | -    |   | Chevron Fr-10,13,20.8                            | -       | -      |          | <br>,             | •        | -          | •               | 1 -        | 1         | 1           | 1             | -           | 1      |   | SURELOK AIR  |
| Brayco 910                                | 2     | 2      | -      | -    | -          | -     | -      | -      | -     | -          | -           | -            | -    |   | Chlordane<br>Chlorinate Paraffin & Petroleum Oil | X       | X      | )        | < ·               |          | X ·        |                 | 11         | 1         | - 1         | - 1           | - 1         | - 1    |   | BRAKE        |
| Brine                                     | 1     | 1      | 1      | 1    | -          | -     | 1      | 1      | 2     | 1          | 1           | -            | 2    |   | Chlorine Gas. Drv                                | N/A     | Х      | N        | /A N              | /A       |            |                 | 1 -        | 2         | X           | X             | -           | 2      |   | COUPLINGS    |
| Brom-113                                  | X     | 2      | -      | -    | -          | -     | -      | -      | -     | -          | -           | -            | -    |   | Chlorine Gas, Wet                                | N/A     | x      | N        | AN/               | /A       | -          |                 | 1 -        | X         | Х           | Х             | Х           | Х      |   |              |
| Brom-114<br>Broming Dry                   |       | 2      | -      | -    | -          | -     | -      | -      | -     | -          | -           | -            | -    |   | Chlorine Trifluoride                             | X       | Х      |          |                   |          | -          |                 |            | 1         | 1           | 1             | 1           | -      |   | ошск         |
| Bromme, Dry<br>Bunker Oil                 | Ŷ     | 2      | 2      |      | ×          | 2     | 1<br>1 | - 1    |       | 1          | 1           | - 1          | 1    |   | Chlorine Water, 3% Chlorine                      | X       | Х      | )        | < ·               | -        | -          |                 | 1 -        | -         | Х           | Х             | -           | -      |   | DISCONNECT   |
| Butadiene                                 | X     | 2      | -      | -    | -          | -     | 1      | 1      | -     | 1          | 1           | -            | 1    |   | Chlorine Water, 25% Chlorine                     | X       | X      | )        | <.<br>/           |          | 2 2        | 2 .             | 12<br>1V   | -         | X           | X             | -           | -      |   | COUPLERS     |
| Butane                                    | X     | Х      | Х      | -    | Х          | Х     | 1      | Х      | 1     | 1          | 1           | -            | 1    |   | Chlorobenzene                                    | Â       | X      | Ś        | $\langle \rangle$ | · ·      | χ.         |                 | 1 X        |           | 2           | 2             | x           | 1      |   |              |
| Butter Oil                                | 2     | -      | -      | -    | -          | -     | 1      | -      | 1     | 1          | 1           | 1            | 1    |   | Chlorobromo Methane                              | X       | X      | Ś        | . ,<br>( .        | -        | Х          |                 | 1 -        | 2         | 2           | 2             | Х           | 1      |   |              |
| Butyric Acid                              | X     | -      | -      | 1    | -          | -     | 1      | Х      | X     | 1          | 1           | -            | 2    |   | Chloroform                                       | Х       | Х      | )        | $\langle \rangle$ | < 1      | Х          |                 | 1 X        | 2         | 1           | 1             | Х           | 1      |   | NEW BALL     |
| Butyl Acetate                             |       | X<br>1 | X<br>1 | 2    | X          | -     | 1      | - 1    | 2     | 1          | 1           | 1            | 1    |   | 0-Chloronaphthalene                              | Х       | Х      | )        | < ·               | -        | -          |                 | 12         | 1         | 1           | 1             | -           | 1      |   | VALVES       |
| Butyl Amine                               |       | -      | -      | -    | -          | -     | 1      | 1      |       | 1          | 1           | 1            | 1    |   | Chlorosulfonic Acid                              | 2       | Х      | )        | ()                | <<br>/   |            |                 | I X        | 1         | -           | -             | -           | -      |   |              |
| Butyl Carbitol                            | 2     | 2      | -      | 1    | -          | -     | 1      | -      | 1     | 1          | 1           | 1            | 1    |   | Chlorox Bleach                                   | X<br>2  | X<br>2 | )        | <pre></pre>       | ۲.<br>۱  | x )<br>2   |                 | 1 -<br>1 1 |           | 1<br>V      | 1             | X<br>Y      | I<br>X |   | ACCESSORIES  |
| Butyl Mercaptan                           | -     | -      | -      | -    | -          | -     | 1      | -      | -     | 1          | 1           | 1            | -    |   | Chromic Acid. 5%                                 | X       | X      |          |                   |          |            |                 | i I<br>1 X | Ŷ         | X           | 2             | X           | X      |   | AUCOUNICO    |
| Butyl Stearate                            | X     | 2      | 2      | 2    | -          | -     | 1      | -      | 1     | 1          | 1           | 1            | 1    |   | Chromic Acid, 10%                                | X       | _X     | )        | (                 |          | 2          | < .             | 1_X        | X         | X           | 2             | X           | Х      | _ |              |
| Butyraldehyde                             | X     | Х      | -      | 2    | -          | -     | 1      | -      | -     | -          | -           | -            | 1    |   | *Use Gates fuel hose or contact                  | Den://  | er F   | Drov     | duct              | Anr      | olicet     | ione            | Dens       | rtme      | ent         |               |             |        | - | EQUIPMENT    |
|                                           | 0     | Cov    | /er s  | tock | k rati     | ing c | only;  | Ratir  | ig fo | r tuk      | oe st       | tock '       | "X"  |   | **Nitrile 150°E or less, no consta               | int cor | ntad   | nt.      |                   | · •P•    |            |                 | - opc      |           |             |               |             |        |   | AND PARTS    |

\*\*Nitrile 150°F or less, no constant contact.



The World's Most Trusted Name in Belts, Hose and Hydraulics.



## **Hose & Coupling Section**

EQUIPMENT

#### HOSE/CPLG. SELECTION

GLOBALSPIRAL COUPLINGS

PCM/PCS FERRULES

MEGACRIMP COUPLINGS

POWER CRIMP COUPLINGS LOW

PRESSURE COUPLINGS

POLARSEAL COUPLINGS

C14

COUPLINGS

PCTS THERMO-PLASTIC COUPLINGS

FIELD ATTACHABLE G1 & G2 COUPLINGS

FIELD ATTACHABLE C5 COUPLINGS

SURELOK AIR BRAKE COUPLINGS

QUICK DISCONNECT COUPLERS NEW BALL

VALVES ACCESSORIES

> EQUIPMENT AND PARTS

| Rating Scale:<br>1 Excellent                       | G      | ate    | s H     | ose    | Pc     | olym                    | ers    |        | 8           | Cou<br>L Ac | ıplir<br>dap | ngs<br>ters |        |
|----------------------------------------------------|--------|--------|---------|--------|--------|-------------------------|--------|--------|-------------|-------------|--------------|-------------|--------|
| 2 Good resistance                                  | А      | С      | $C_2$   | J      |        |                         | Z      | 2      |             | 04          | 16           |             |        |
| X Not recommended                                  |        | 7      | rac     | le N   | lan    | nes                     |        |        | -           | el 3        | el 3         |             |        |
| <ul> <li>Testing recommended</li> </ul>            | oprene | ile    | ile/PVC | ш      | oalon  | thane<br>r rating only) | ĥ      | on     | bon Stee    | inless Ste  | inless Ste   | minum       | SS     |
| Chemical Name                                      | Ne     | Nit    | Nit     | G      | Ŧ      | <b>n</b><br>∎<br>§      | Ηd     | Ŋ      | Cal         | Sta         | Sta          | Alu         | Bra    |
| Chromic Acid, 25%                                  | Х      | Х      | Х       | 1      | 2      | Х                       | 1      | Х      | Х           | Х           | 2            | Х           | Х      |
| Chromic Acid, 50%                                  | Х      | Х      | Х       | 1      | 2      | X                       | 1      | Х      | X           | X           | 2            | 1           | X      |
| Circo Light Process Oil                            | 1      | 1      | -       | -      | -      | -                       | 1      | -      | 1           | 1           | 1            | 1           | -      |
| Citgo FR Fluids                                    | -      | Х      | -       | Х      | -      | 2                       | 1      | -      | 1           | 1           | 1            | -           | 1      |
| Citgo Glycol FR-20XD<br>Citgo Sentry (Under 100°E) | - 2    | 1      | - 1     | Ĵ      | -<br>X | 2                       | 1      | Ĵ      | 1           | 1           | 1            | Ĵ           | 1      |
| Citgo Tractor Hydraulic Fluid                      | -      | 1      | -       | -      | -      | 2                       | 1      | -      | 1           | 1           | 1            | -           | 1      |
| Citric Acid, 5%                                    | -      | 2      | -       | -      | -      | -                       | 1      | 1      | Х           | 1           | 1            | 1           | Х      |
| Citric Acid, 5% @150°F                             | - 1    | 2      | -       | -      | -      | -                       | 1      | X<br>1 | X           | X           | 1            | 2           | X<br>1 |
| Citric Acid, 15% Boiling                           | 1      | 2      | -       | -      | -      | -                       | 1      | Х      | X           | 2           | 1            | X           | Х      |
| Citric Acid, Concentrated Boiling                  | 1      | Х      | 1       | -      | 1      | 2                       | 1      | Х      | Х           | Х           | 1            | Х           | Х      |
| Coal Gas                                           | 1      | Х      | -       | 1      | -      | 1                       | 1      | -      | -           | -           | -            | -           | -      |
| Coal Lars<br>Cod Liver Oil                         | X<br>1 | 2      | X<br>1  | 2      | 2      | -                       | 1      | X<br>- |             | 1           | 1            | 1           | 1      |
| Coke Oven Gas (Under 100°F)                        | X      | 2      | Х       | -      | 2      | -                       | 1      | -      | 1           | 1           | 1            | 1           | 1      |
| Condor 1000,1002,1004,                             |        |        |         |        |        |                         |        |        |             |             |              |             |        |
| 1006,1008                                          | -      | 2      | -       | -      | -      | -                       | -      | -      | -           | -           | -            | -           | -      |
| 1014.1016                                          |        | 2      | -       | -      | -      | -                       | -      | -      | -           | -           | -            | -           | -      |
| Convelex 10                                        | Х      | Х      | -       | -      | -      | -                       | -      | -      | -           | -           | -            | -           | -      |
| Copper Arsenate, Cupric Arsenate                   | -      | -      | -       | -      | 2      | -                       | 1      | -      | 1           | 1           | 1            | -           | -      |
| Copper Chloride, 1%                                | 1      | 1      |         |        | -      | -                       | 1      | X<br>X | X           | X<br>X      | 1            | -           | X      |
| Copper Chloride, Cupric Chloride                   | 2      | 2      | 2       | 2      | 2      | 1                       | 1      | 2      | X           | Х           | 1            | -           | Х      |
| Copper Cyanide, Cupric Cyanide                     | 2      | 2      | 2       | -      | 2      | -                       | 1      | Х      | 1           | 1           | 1            | -           | Х      |
| Copper Nitrate, 1% & 5%                            | 1      | 1      | -       | -      | -      | -                       | 1      | 1      | X           | 1           | 1            | X           | Х      |
| Copper Sulfate, Cupric Sulfate                     | 1      | 1      | 1       | 1      | 1      | 1                       | 1      | 1      | X           | 1           | 1            | X           | X      |
| Copper Sulfate, 10%                                | 1      | 1      | -       | -      | -      | -                       | 1      | -      | X           | 2           | 2            | Х           | -      |
| Copper Sulfate, 50%                                | 1      | 1      | -       | -      | -      | -                       | 1      | -      | -           | 2           | 2            | -           | -      |
| Corn Oil                                           | X<br>2 | 2      | 2       | 2      | Х      | Х                       | 1      | -      | 1           | 1           | 1            | - 1         | 1      |
| Cottonseed Oil                                     | 2      | 2      | 1       | 2      | 2      | x                       | 1      | 2      | 1           | 1           | 1            | 1           | 1      |
| Creosote, Wood Or Coal Tar                         |        |        |         |        |        |                         |        |        |             |             |              |             |        |
| (Under 100°F)                                      | Х      | 2      | Х       | -      | Х      | Х                       | 1      | Х      | 2           | 1           | 1            | 1           | Х      |
| Cresol, Cresylic Acid (Under 100°F)                | X      | X      | -       | -      | -      | -                       | 1      | X      | 2           | 1           | 1            | 2           | -      |
| Crude Petroleum Oil (Under 100°F)                  | Х      | Х      | 2       | 2      | 2      | 2                       | 1      | -      | X           | X           | 2            | 1           | -      |
| Cutting Oil, Water Soluble                         | Х      | 1      | -       | -      | -      | -                       | 1      | -      | 1           | 1           | 1            | -           | 1      |
| Cutting Oil, Sulfur Base                           | X<br>2 | 1      | -       | - 1    | -<br>Y | -                       | 1      | -      |             | 1           | 1            | 1           | 1      |
| Cyclohexane                                        | X      | 2      | -       | 1      | Х      | 1                       | 1      | 1      | 1           | 1           | 1            | 1           | 1      |
| Cyclohexanone                                      | Х      | Х      | Х       | 2      | Х      | 1                       | 1      | 1      | -           | 1           | 1            | 2           | -      |
| Cymene                                             | Х      | Х      | Х       | Х      | Х      | -                       | 1      | -      | 1           | 1           | 1            | 1           | 1      |
| D                                                  |        |        |         |        |        |                         |        |        |             |             |              |             |        |
| Dasco FR150, FR200,                                |        |        |         |        |        |                         |        |        |             |             |              |             |        |
| FR200B, FR310<br>Dasco JER                         | 1      | 1      | 2       | -      | -      | -                       | 1<br>1 | 1      | 1           | 1           | 1            | 1           | 1      |
| DC200, DC510, DC550, DC560                         | -      | 1      | -       | -      | -      | -                       | -      | 1      | -           | 1           | 1            | 1           | 1      |
| Decalin                                            | Х      | 2      | -       | 2      | Х      | -                       | 1      | 1      | -           | -           | -            | -           | 1      |
| Dectol R&O Oils                                    | X      | 1      | -       | -<br>- | -      | 2                       | -      | -      | -           | -           | -            | -           | -      |
| Developing Fluids. Photo                           | 1      | 1      | -       | 1      | -      | -                       | -      | 1      | $ _{X}^{1}$ | 1<br>X      | 2            | -           | -      |
| Developing Solutions, Hypos                        | 2      | -      | -       | 1      | 2      | -                       | 1      | -      | -           | 1           | 1            | -           | -      |
| Diacetone                                          | Х      | Х      | Х       | 1      | Х      | -                       | 1      | 1      | 1           | 1           | 1            | 1           | 1      |
| Diacetone Alcohol<br>Dibenzel Ether                | -<br>X | X<br>X | 2       | 1      | -      | -                       | 1      | 1      | 1           | 1           | 1            | 1           | 1      |
| Dibutyl Ether                                      | Х      | X      | -       | 1      | -      | -                       | 1      | -      | 1           | 1           | 1            | 1           | 1      |
|                                                    |        |        |         |        |        |                         |        |        |             |             |              |             | _      |

| Rating Scale:<br>1 Excellent            | G            | ate    | s H    | ose  | Po     | olym       | ers |       | 8      | Cou<br>& Ao | uplii<br>dap  | ngs<br>ters | ;   |
|-----------------------------------------|--------------|--------|--------|------|--------|------------|-----|-------|--------|-------------|---------------|-------------|-----|
| 2 Good resistance                       | A            | С      | $C_2$  | J    |        |            | Z   | 2     |        | 04          | 16            |             |     |
| X Not recommended                       |              | 7      | Trac   | le l | lan    | nes        |     |       | _      | el 3(       | <u>e</u> ] 3: |             |     |
| <ul> <li>Testing recommended</li> </ul> | e            |        | Q      |      |        | only)      |     |       | Stee   | Ste         | Ste           | ۶           |     |
| -                                       | ren          | d)     | P/     |      | b      | ating      |     | _     | 5      | less        | ess           | inur        | (   |
|                                         | leo          | litrij | litrij | Ë    | lypa   | over n     | Ë   | lyloi | arb    | tain        | tain          | lum         | ras |
| Chemical Name                           | Z            | Z      | Z      | 0    | T      | <b>⊃</b> ⊙ | 1   | z     | 1      | 0<br>1      | ທ<br>₁        | <           | 1   |
| Dibutyl Prinalate (Under 120°F)         | X            | X      | X      | 2    | -      | -          | 1   | -     | -      | -           | -             | -           | 1   |
| Dichlorobenzene                         | X            | Х      | Х      | Х    | Х      | Х          | 1   | 1     | -      | 1           | 1             | -           | 1   |
| Dichloroethane                          | X            | Х      | Х      | Х    | -      | -          | 1   | Х     | -      | Х           | Х             | Х           | Х   |
| Diesel, Biodiesel**                     | -            | -      | -      | -    | -      | - 1        | 1   | 1     | -      | 1           | 1             | -           | -   |
| Diester Lubricant MII -I-7808           |              | 2      | 2      | -    | -      | -          | 1   | -     |        | 1           | 1             | 1           | -   |
| Diester Synthetic Lubricants            | X            | 2      | -      | -    | -      | -          | 1   | -     | 1      | 1           | 1             | 1           | -   |
| Diethylamine (Under 120°F)              | 2            | 2      | -      | 2    | Х      | -          | 1   | 1     | 1      | 1           | 1             | 1           | 1   |
| Diethylene Glycol                       | 1            | 1      | 1      | 1    | 1      | 1          | 1   | 1     | 1      | 1           | 1             | 1           | 1   |
| Diethyl Ether                           |              | X      | -      | 2    | -      | -          | 1   | -     |        | 1           | 1             | -           | 1   |
| Diethyl Sebacate                        | X            | Х      | Х      | 2    | -      | -          | 1   | -     | -      | 1           | 1             | -           | 1   |
| Diisobutylene                           | X            | 2      | -      | 1    | Х      | -          | 1   | -     | 2      | 1           | 1             | 2           | 1   |
| Diisobutyl Ketone                       | X            | Х      | Х      | 2    | Х      | -          | 1   | 1     | 1      | 1           | 1             | 1           | 1   |
| Disopropyl Ketone                       |              | X<br>Y | X      | 2    | X      | -          | 1   | 1     | -      | 1           | 1             | -           | 1   |
| Dimethyl Formamide (Under 120°F)        | x            | Х      | X      | -    | -      | -          | 1   | -     | 1      | 1           | 1             | 1           | -   |
| Dimethyl Phthalate                      | X            | Х      | Х      | 1    | Х      | -          | 1   | -     | -      | -           | -             | -           | 1   |
| Dioctyl Phthalate                       | X            | Х      | Х      | 2    | Х      | -          | 1   | -     | 1      | 1           | 1             | 1           | 1   |
| Dioctyl Sebacate                        |              | X      | X      | X    | Х      | -          | 1   | - 1   |        | 1           | 1             | 1           | -   |
| Dipentene                               | Â            | X      | -      | 2    |        |            | 1   | -     |        | 1           | 1             | 1           | 1   |
| Dirco Oils                              | -            | 1      | -      | -    | -      | -          | 1   | 1     | 1      | 1           | 1             | 1           | 1   |
| Dispersing Oil #10                      | X            | Х      | -      | -    | -      | -          | 1   | -     | 1      | 1           | 1             | 1           | -   |
| Dowtherm A                              | X            | X      | Х      | 2    | Х      | Х          | 1   | -     | 1      | 1           | 1             | 1           | 1   |
| DOWINERINE<br>DP47 200 Flow - DOW       |              | 1      | -      | 2    | -      | -          | 1   | 1     |        | 1           | 1             | 1           | 1   |
| Duro FR-HD                              | -            | 1      | -      | -    | -      | Х          | 1   | 1     | 1      | 1           | 1             | 1           | 1   |
| Duro Oils                               | -            | 1      | -      | -    | -      | -          | 1   | 1     | 1      | 1           | 1             | 1           | 1   |
| E                                       |              |        |        |      |        |            |     |       |        |             |               |             |     |
| Elco 28-EPLubricant                     | X            | 1      | -      | -    | -      | -          | -   | -     | 1      | 1           | 1             | 1           | -   |
| Enamels<br>Energol HI 68                | -            | -      | -      | Ĵ    | Ĵ      | -          | -   | -     | 1      | - 1         | - 1           | 1           | 1   |
| Energol HLPC 68                         | -            | 1      | -      | -    | -      | -          | -   | -     | 1      | 1           | 1             | 1           | 1   |
| EPHydraulic Oils, Chevron               | -            | 1      | -      | -    | -      | -          | -   | -     | 1      | 1           | 1             | 1           | 1   |
| Epichlorohydrin (Under 120°F)           | X            | Х      | -      | -    | -      | -          | 1   | -     | 1      | 2           | 1             | 1           | -   |
| ESam-6 FIUI0<br>Ethanol                 | 2            | -      | -      | - 1  | Ĵ      | -<br>X     | - 1 | 1     | -<br>X | - 1         | - 1           | -           | 1   |
| Ethanolamine, Aminoethanol              | 2            | 2      | -      | 1    | Х      | X          | 1   | 1     | 1      | 1           | 1             | 1           | 1   |
| Ethers (Under 120°F)                    | X            | 2      | Х      | 1    | 2      | 2          | 1   | 1     | 1      | 1           | 1             | 1           | 1   |
| Ethyl Acetate                           | X            | Х      | Х      | 2    | Х      | 2          | 1   | 1     | 1      | 1           | 1             | 2           | 2   |
| Ethyl Acetoacetate                      | X            | X<br>X | X<br>X | 1    | X<br>X | X<br>X     | 1   | -     |        | 1           | 1             | 1           | 1   |
| Ethyl Alcohol                           | 1            | 1      | 1      | 1    | -      | -          | 1   | 1     | 1      | 1           | 1             | 1           | 2   |
| Ethyl Amine, Monoethylamine             | X            | Х      | Х      | 1    | Х      | Х          | 1   | -     | 2      | 1           | 1             | 2           | 1   |
| Ethyl Benzene                           | X            | Х      | Х      | 2    | Х      | 1          | 1   | -     | 1      | 1           | 1             | 1           | 1   |
| Ethyl Bromide, Di<br>Ethyl Butyrate     | X            | X<br>X | X<br>X | 2    | X      | -          | 1   | -     |        | 1           | 1             | 1           | 1   |
| Ethyl Cellulose                         | -            | -      | -      | 1    | -      | -          | 1   | -     | 1      | 1           | 1             | -           | 1   |
| Ethyl Chloride                          | X            | Х      | Х      | -    | -      | Х          | 1   | -     | 2      | 1           | 1             | 1           | 2   |
| Ethyl Ether                             |              | Х      | Х      | Х    | -      | -          | 1   | -     | 2      | 1           | 1             | 1           | 1   |
| Ethyl Mercaptan<br>Ethyl Oxalate        | X            | X<br>X | ×<br>- | -    | X<br>Y | X<br>X     | 1   | -     | 2      | -           | -             | -           | -   |
| Ethyl Pentachlorobenzene                | -            | Х      | -      | X    | -      | 1          | 1   | -     | 2      | 1           | 1             | -           | 1   |
| Ethyl Silicate                          | 1            | 1      | 1      | 1    | -      | 1          | 1   | 1     | 1      | 1           | 1             | 1           | 1   |
| Ethylene Chloride                       | X            | Х      | Х      | Х    | -      | 1          | 1   | Х     | 2      | 1           | 1             | -           | 2   |
| Ethylene Chlorohydrin,                  | <sub>v</sub> | v      | v      |      |        | v          | 1   | v     | 1      | 1           | 0             | v           |     |
| Ethylene Diamine (Under 100°F)          |              | 2      | 2      | 1    | X      | x          | 1   | -     | -      | -           | -             | ^<br>-      | 1   |
| Ethylene Dichloride                     | X            | Х      | -      | 2    | -      | 1          | 1   | 1     | -      | 1           | 1             | Х           | -   |
| Ethylene Glycol                         | 1 1          | 1      | 1      | 1    | 1      | 1          | 1   | 1     | 2      | 1           | 1             | 1           | 1   |

\*\*Nitrile 150°F or less, no constant contact.

1 1 1

1 1 1 1 1

Ethylene Glycol



1 1

2

1 1

Brass



HOSE/CPLG. Selection

GLOBALSPIRAL COUPLINGS

PCM/PCS Ferrules

MEGACRIMP COUPLINGS

POWER CRIMP COUPLINGS

LOW PRESSURE COUPLINGS

C14 COUPLINGS

PCTS THERMO-PLASTIC

POLARSEAL COUPLINGS

### **Chemical Resistance Table**

| Rating Scale:                          | G      | ate    | s H   | ose      | Po     | olym     | iers  |     | 8       |        | ıpliı<br>dap | ngs<br>ters |          |
|----------------------------------------|--------|--------|-------|----------|--------|----------|-------|-----|---------|--------|--------------|-------------|----------|
| 2 Good resistance                      |        |        | Tra   | de       | Nai    | mes      |       |     |         | 4      | 9            |             |          |
| X Not recommended                      | Δ      | С      | C.    | J        |        |          | 7     | ,   |         | 30     | 31           |             |          |
|                                        |        | -      | 0     | -        |        | ş        |       |     | tee     | Stee   | Stee         | _           |          |
| - resung recommended                   | ene    |        | Ъ     |          | Ľ      | ng or    |       |     | n<br>Si | SS     | SS           | m           |          |
|                                        | b      | rile   | rile/ | ш        | palc   | er rati  | Ш     | b   | ę       | ainle  | ainle        | шi          | ass      |
| Chemical Name                          | Re     | Ż      | Ž     | <u>с</u> | Ŧ      | <u>گ</u> | РТ    | ź   | Sa      | Sta    | Sta          | AIL         | B        |
| F                                      |        |        |       |          |        |          |       |     |         |        |              |             |          |
| Factovis 52                            | -      | 1      | -     | -        | -      | -        | -     | -   | 1       | 1      | 1            | 1           | 1        |
| Fatty Acids                            | 2      | 2      | 2     | 2        | Х      | 1        | 1     | 1   | 2       | 1      | 1            | 1           | 2        |
| Ferric Chloride                        | -      | -      | -     | 1        | 2      | -        | 1     | 1   | X       | X      | X            | X           | X        |
| Ferric Chloride, 1% Boiling            |        | 2      | -     | -        | -      | -        | 1     | 1   | Ŷ       | Z<br>V | Z<br>Y       | Ŷ           | Ŷ        |
| Ferric Chloride, 5% Still              | 2      | 1      | _     | _        | -      | -        | 1     | 1   | Â       | X      | x            | X           | X        |
| Ferric Chloride, 5% Agitated           | -      | ·      |       |          |        |          | ·     |     |         |        |              |             | ~        |
| or Aerated                             | 2      | 2      | -     | -        | -      | -        | 1     | 1   | X       | Х      | Х            | Х           | Х        |
| Ferric Chloride, 10%                   | 2      | 1      | -     | -        | -      | -        | 1     | 1   | X       | Х      | Х            | Х           | Х        |
| Ferric Sulfate                         | 2      | 2      | 2     | 1        | 2      | -        | 1     | 1   | X       | 1      | 1            | Х           | Х        |
| Ferrous Chloride                       | 1      | 1      | -     | 1        | 2      | -        | 1     | -   | X       | 1      | 2            | -           | 2        |
| Ferrous Nitrate                        | 2      | 2      | 2     | -        | 2      | -        | 1     | -   | -       | 1      | 1            | -           | -        |
| Ferrous Sulfate, Copper Gas            | 2      | 2      | 2     | I        | 2      | -        | 1     | - 1 | × ×     | 1      | 2            | V           | 2        |
| Ferrous Sulfate, Saturated             |        | -      | -     | -        |        |          | 1     | 1   | <u></u> | 2      | 2            | x           | 2        |
| Fire Resistant Hydraulic Fluid. Texaco | -      | 1      | -     | -        | -      | -        | 1     | -   | 1       | 1      | 1            | 1           | 1        |
| Firtec 290, MF                         | -      | -      | -     | -        | -      | -        | 1     | -   | -       | -      | -            | -           | -        |
| Fixing Solution, Photo                 | 2      | -      | -     | -        | 2      | -        | 1     | -   | -       | 1      | 1            | -           | -        |
| Fluoboric Acid                         | 1      | 1      | -     | 1        | -      | -        | 1     | -   | 1       | -      | 1            | Х           | -        |
| Fluoboric Acid, 65%                    | 2      | -      | -     | 1        | 2      | Х        | 1     | -   | -       | 1      | 1            | -           | -        |
| Fluosilicic Acid                       | 2      | 1      | -     | -        | -      | -        | 1     | -   | X       | Х      | Х            | X           | 1        |
| Fluosilicic Acid, 50%                  | 2      | X      | Х     | 1        | 2      | Х        | 1     | X   | -       | -      | -            | 1           | -<br>V   |
| Formaldehyde 37%                       |        | ×<br>2 | -     | 1        | - 2    | - 2      | 1     | 2   |         | 1      | 1            | 1           | ۸<br>1   |
| Formaldehyde, 57 %                     | -      | -      | _     | -        | -      | -        | 1     | 1   | x       | 2      | 1            | 2           | 1        |
| Formic Acid (Under 120°F)              | 1      | Х      | 1     | 1        | 2      | Х        | 1     | 2   | X       | 2      | 1            | 1           | 2        |
| Formic Acid, Dilute Hot                | 1      | Х      | -     | 1        | -      | -        | 1     | Х   | X       | 2      | 1            | 2           | Х        |
| Freon 12 (Under 100°F)                 | U      | lse    | Fre   | eon      | Нo     | se       | 0 n l | y   | 2       | 1      | 1            | 1           | 1        |
| Freon 114                              | U      | lse    | Fre   | eon      | Нo     | se       | 0 n l | y   | 1       | 1      | 1            | 1           | -        |
| Fruit Juices                           |        |        | ~     |          | -      | -        | 1     | 1   | X       | 1      | 1            | -           | -        |
| Fuel UII                               | 2      | 1      | (1)   | 1        | Х      | 2        | 1     | 1   | 2       | 2      | 2            | 1           | 2        |
| Fumanic Aciu                           |        | Ŷ      | Ŷ     | 1        | -      | ^        | 1     | -   |         | 1      | 1            | 1           | 1        |
| Furan Resin                            | x      | X      | -     | -        | -      | -        | 1     | -   | -       | -      | 1            | -           | -        |
| Furfural Alcohol, Ant Oil              | 2      | Х      | Х     | 1        | 2      | -        | 1     | 1   | 2       | 1      | 1            | 1           | 1        |
| Fusel Oil, Grain Oil                   | Х      | Х      | -     | -        | -      | -        | 1     | -   | -       | -      | -            | -           | -        |
| Fyrguard 150, 200                      | -      | 1      | -     | -        | -      | -        | 1     | -   | 1       | 1      | 1            | 1           | 1        |
| Fyrquel A60, 90, 100, 150,             |        |        |       |          |        |          |       |     |         |        |              |             |          |
| 220, 300, 500                          | X      | Х      | -     | -        | -      | -        | 1     | -   | 1       | -      | -            | 1           | -        |
| Fyrquel 1000, 15R&0,                   |        | v      |       |          |        |          | 1     |     | 1       |        |              | 1           |          |
| 220ha0, 330ha0                         | ^      | ^      | -     | -        | -      | -        |       | -   |         | -      | -            | -           | <u> </u> |
| Gallic Acid (Under 100°F)              | Х      | Х      | Х     | 1        | -      | Х        | 1     | 2   | Х       | 1      | 1            | Х           | -        |
| Gas, Natural                           | -      | -      | -     | Х        | -      | -        | 1     | -   | 1       | 1      | 1            | -           | 2        |
| Gasohol                                | 2      | *      | *     | -        | Х      | -        | 1     | -   | 2       | 1      | 1            | 1           | 1        |
| Gasoline, Aviation                     | X      | -      | 2     | -        | -      | -        | 1     | -   | -       | 1      | 1            | 1           | 1        |
| Gasoline, Meter                        | X      | *      | -     | -        | -      | -        | 1     | Х   | 1       | 1      | 1            | 1           | Х        |
| Gasoline, Premium                      |        | *      | *     | -        | Х      | Х        | 1     | -   | 2       | 1      | 1            | 1           | 1        |
| Gasoline, Sour                         | X<br>A | ×<br>× | *     | -        | -<br>V | v        | 1     | -   | 2       | 1      | 1            | X<br>1      | -        |
| Gasoline, Unleaded Under               |        |        |       | 2        | ^      | ^        | 1     | -   | 2       | 1      | 1            |             | 1        |
| 50% Aromatics                          | X      | *      | Х     | -        | Х      | Х        | 1     | -   | 2       | 1      | 1            | 1           | 1        |
| Gelatin                                | 1      | 1      | -     | -        | -      | -        | 1     | 1   | X       | 1      | 1            | 1           | -        |
| Glauber's Salt                         | 2      | Х      | -     | -        | -      | -        | 1     | -   | 1       | 1      | 1            | -           | -        |
| Glucose                                | 1      | 1      | 1     | -        | 1      | 1        | 1     | 1   | 1       | 1      | 1            | 1           | 1        |
| Glue (Under 120°F)                     | 2      | 2      | 2     | -        | 1      | 1        | 1     | 2   | 2       | 1      | 1            | 2           | Х        |
| Glycerine, Glycerol                    | 1      | 1      | 1     | 1        | 1      | 1        | 1     | 1   | 2       | 1      | 1            | 1           | 2        |
| Glycole // Index 12005                 | -      | 1      | -     | -        | -      | -        | 1     | -   | 1       | 1      | 1            | 1           | 1        |
| Grease, Ester Base                     | -      | -      | -     | -        | -      | -        | 1     | 1   |         | 1      | 1            | 1           | 1        |

| Rating Scale:                                              | G            | ate    | s H        | ose | Po     | lym        | ers |      | (        | Οοι        | ıplir      | ngs     |      |
|------------------------------------------------------------|--------------|--------|------------|-----|--------|------------|-----|------|----------|------------|------------|---------|------|
| 1 Excellent                                                |              |        | _          |     |        |            |     |      | 8        | ι Ac       | lap        | ters    |      |
| 2 Good resistance                                          | <u> </u>     | _      | Tra        | de  | Nar    | nes        |     |      |          | 304        | 316        |         |      |
| X Not recommended                                          | A            | С      |            | J   |        | Þ          | 2   |      | <u>e</u> | steel      | steel      |         |      |
| - Testing recommended                                      | eoprene      | itrile | itrile/PV0 | PE  | ypalon | rethane    | TFE | ylon | arbon St | tainless S | tainless S | luminum | rass |
| Chemical Name                                              | ž            | z      | z          | Ö   | Í      | <u>⊃</u> ĕ | Ŀ.  | ź    | Ű        | ş          | ş          | ₹       | m    |
| Grease, Petroleum Base                                     | 2            | 1      | 2          | -   | 2      | 1          | 1   | 1    | 1        | 1          | 1          | 1       | 1    |
| Grease, Silicone Base<br>Green Sulfate Liquor. Under 100°F | 2            | 2      | 1          | 2   | 1      | -          | 1   | -    |          | 1          | 1          | -       | -    |
| Gulf FR Fluid G-200                                        | -            | 1      | -          | -   | -      | Х          | 1   | -    | 1        | 1          | 1          | 1       | 1    |
| Gulf FR Fluid P37, P40, P43,                               |              | v      |            |     |        | V          |     |      |          |            |            |         |      |
| P45, P47                                                   | -            | X      | -          | -   | -      | X          |     | -    | -        | -          | -          | -       | -    |
| Halowax Oil                                                | Х            | Х      | Х          | -   | Х      | -          | 1   | -    | -        | -          | -          | -       | -    |
| Heptachlor, In Petroleum                                   | -            | 2      | Х          | -   | -      | -          | 1   | -    | -        | -          | -          | -       | -    |
| Heptane (Under 100°F)                                      | 2            | 1      | 2          | 1   | Х      | 1          | 1   | 1    | 1        | 1          | 1          | 1       | 1    |
| N-Hexaldenyde<br>Hexane (Under 120°E)                      | 6            | 1      | ଁ          | 2   | - 1    | - 1        | 1   | 1    |          | 1          | 1          | 1       | 1    |
| Hexene                                                     | 2            | 2      | -          | 1   | -      | -          | 1   | -    | 1        | 1          | 1          | -       | 1    |
| Hexyl Alcohol                                              | 1            | 2      | 1          | 1   | -      | -          | 1   | -    | 1        | 1          | 1          | 1       | 2    |
| High Viscosity Lubricant, U4                               | 2            | 1      | -          | -   | -      | -          | 1   | -    | -        | -          | -          | -       | -    |
| High Viscosity Lubricant, H2<br>Hilo MS #1                 |              | X      | -          | -   | -      | -          | -   | -    |          | -          | -          | -       | -    |
| Houghto-Safe 1010,1055                                     |              | ~      |            |     |        |            |     |      |          |            |            |         |      |
| (Phos. Ester)                                              | Х            | Х      | Х          | 1   | Х      | -          | 1   | -    | 1        | 1          | 1          | 1       | 1    |
| Houghto-Safe 1115,1120,                                    |              | v      | V          |     | V      |            | -   |      |          |            |            |         |      |
| Houghto-Safe 271 416 520                                   | X            | X      | X          | I   | X      | -          | I   | -    |          | I          | I          | I       | 1    |
| 616 (Water/Glycol)                                         | 2            | 1      | 1          | -   | -      | 2          | 1   | -    | 1        | 1          | 1          | 1       | 1    |
| Houghto-Safe 620, 625, 640,                                |              |        |            |     |        |            |     |      |          |            |            |         |      |
| 525 (Water/Glycol)                                         | 1            | 1      | 1          | -   | -      | 2          | 1   | -    | 1        | 1          | 1          | 1       | 1    |
| (Water/Oil Emulsion)                                       | 2            | 1      | -          | -   | -      | -          | 1   | -    | 1        | 1          | 1          | 1       | 1    |
| Hy-Chock Oil                                               | -            | 1      | -          | -   | -      | -          | 1   | 1    | 1        | 1          | 1          | -       | -    |
| Hydrafluid 760, Texaco and                                 |              |        |            |     |        |            |     |      |          |            |            |         |      |
| Houghton                                                   | -            | 1      | -          | -   | -      | -          | 1   | 1    |          | 1          | 1          | -       | 1    |
| Hydranulu Azrau, A, B, AA, C<br>Hydrasol A                 |              | 1      | -          | -   | -      | -          | 1   | 1    |          | 1          | 1          | -       | -    |
| Hydraulic Fluid, Phosphate                                 |              |        |            |     |        |            |     | ·    | ·        |            |            |         |      |
| Ester Base                                                 | Х            | Х      | Х          | 1   | -      | Х          | 1   | 1    | 1        | 1          | 1          | -       | -    |
| Hydraulic Fluid, Std. Petroleum Oils                       | 2            | 1      | 2          | 1   | 2      | 2          | 1   | 1    |          | 1          | 1          | 1       | 1    |
| Hydraulic Fluid HF - 18, HF - 20                           |              | 1      | -          | -   | -      | 2          | 1   | 1    |          | 1          | 1          | 1       | 1    |
| Hydraulic Fluid HF - 31                                    | -            | -      | -          | -   | -      | -          | 1   | 1    | 1        | 1          | 1          | 1       | 1    |
| Hydraulic Oils, Petroleum                                  | 2            | 1      | -          | -   | -      | -          | 1   | 1    | 1        | 1          | 1          | 1       | 1    |
| Hydraulic Oils, Synthetic<br>Hydraulic Safety Eluid 200    | -            | Х      | -          | -   | -      | -          | 1   | -    | 1        | 1          | 1          | 1       | 1    |
| & 300, Texaco                                              | -            | 1      | -          | -   | -      | 1          | 1   | -    | 1        | 1          | 1          | 1       | 1    |
| Hydrazine                                                  | X            | Х      | Х          | -   | -      | 2          | 1   | -    | -        | -          | -          | -       | -    |
| Hydro-Drive Oil, Houghton                                  | -            | 1      | -          | -   | -      | 2          | 1   | -    | -        | -          | -          | -       | -    |
| Hydrobromic Acid 37%                                       |              | X      | ×          | - 1 | - 2    | -<br>X     | 1   | X    |          | 1          | 1          | X<br>X  | -    |
| Hydrochloric Acid                                          | 2            | Х      | -          | -   | -      | -          | 1   | Х    | X        | X          | X          | Х       | Х    |
| Hydrochloric Acid, 3 Molar                                 | 2            | Х      | -          | -   | -      | -          | 1   | Х    | X        | Х          | Х          | Х       | Х    |
| Hydrochloric Acid, Concentrated                            | X            | Х      | -          | -   | -      | -<br>V     | 1   | X    | X        | X          | Х          | Х       | Х    |
| Hydrochloric Acid, 15%                                     |              | -      | X          | 1   | 2      | X          | 1   | X    | X        | X          | X          | X       | X    |
| Hydrocyanic Acid, 20% Under 100°F                          | X            | Х      | Х          | -   | 2      | Х          | 1   | 1    | X        | 1          | 1          | 1       | Х    |
| Hydrocyanic Acid, 98%                                      | -            | -      | -          | -   | -      | -          | 1   | -    | -        | -          | -          | -       | -    |
| Hydrofluoric Acid, 10%                                     | 2            | 2      | X          | 1   | 1      | X          | 1   | X    | X        | X          | X          | X       | X    |
| Hydrofluoric Acid. 48%                                     | <sup>∠</sup> | X      | X          | 1   | 2      | X          | I   | ٨    | ^        | X          | ٨          | X       | ٨    |
| (Under 120°F)                                              | 2            | Х      | Х          | 1   | 2      | Х          | 1   | Х    | X        | Х          | Х          | Х       | Х    |
| Hydrofluoric Acid, 70%                                     | -            | Х      | Х          | -   | 2      | Х          | 1   | Х    | X        | Х          | Х          | Х       | Х    |
| Hydrofluoric Acid, Concentrated                            | X            | X      | Х          | 1   | 2      | Х          | 1   | Х    | X        | Х          | Х          | Х       | Х    |
| Hydrofluosilicic                                           | x            | X      | X          | X   | -      | -          | 1   | X    | X        | X          | Ā          | X       | -    |
| Hydrogen                                                   | 1            | 1      | -          | 1   | -      | -          | 1   | -    | X        | Х          | Х          | 1       | -    |

COUPLINGS FIELD ATTACHABLE G1 & G2 COUPLINGS FIELD ATTACHABLE C5 COUPLINGS SURELOK AIR BRAKE COUPLINGS QUICK DISCONNECT COUPLERS NEW BALL VALVES ACCESSORIES EQUIPMENT AND PARTS

OCover stock rating only; Rating for tube stock "X"

\*Use Gates fuel hose or contact Denver Product Applications Department.

The World's Most Trusted Name in Belts, Hose and Hydraulics.





HOSE/CPLG. SELECTION

GLOBALSPIRAL COUPLINGS

PCM/PCS FERRULES

MEGACRIMP COUPLINGS

POWER CRIMP COUPLINGS

LOW PRESSURE COUPLINGS

C14 COUPLINGS

PCTS THERMO-PLASTIC COUPLINGS

FIELD ATTACHABLE G1 & G2 COUPLINGS

FIELD ATTACHABLE C5 COUPLINGS

SURELOK AIR BRAKE COUPLINGS

QUICK DISCONNECT COUPLERS

NEW BALL VALVES

ACCESSORIES

EQUIPMENT AND PARTS

**C57** 

POLARSEAL COUPLINGS

## **Hose & Coupling Section**

**Chemical Resistance Table** 

| Rating Scale:<br>1 Excellent                  | G      | ate      | s H   | ose  | Po     | olym       | iers |      | 8        | Col<br>k Ad | ıpliı<br>dap | ngs<br>ters | ;        |
|-----------------------------------------------|--------|----------|-------|------|--------|------------|------|------|----------|-------------|--------------|-------------|----------|
| 2 Good resistance                             | А      | С        | $C_2$ | J    |        |            | Z    | 2    |          | 4           | 9            |             |          |
| X Not recommended                             |        | 7        | Trac  | le N | lan    | nes        |      |      |          | el 3(       | el 31        |             |          |
| <ul> <li>Testing recommended</li> </ul>       | 0      |          | Q     |      |        | Ś          |      |      | tee      | Ste         | Ste          | _           |          |
| rooting rootinnended                          | ene    |          | ٩     |      | ы      | ane        |      |      | S<br>S   | ess         | SSS          | nun         |          |
|                                               | Idoe   | trile    | trile | Щ    | /pal   | eth:       | Ë    | /lon | arbo     | ainle       | ainle        | umi         | ass      |
| Chemical Name                                 | ž      | Ż        | Ż     | ΰ    | Í      | <b>2</b> § | 2    | ź    | ő        | ş           | ß            | Ā           | ģ        |
| Hydrogen Chloride Gas                         | -      | -        | -     | 1    | -      | -          | 1    | -    | -        | 1           | 1            | -           | -        |
| Hydrogen Cyanide Gas                          | -      | -<br>Y   | -     | -    | -      | -          | -    | -    | 2        | - 2         | - 1          | 1           | -        |
| Hydrogen Peroxide. Dilute                     | 1      | 2        | -     | -    | 2      | -          | 1    | 1    | 1        | -           | 1            | -           | X        |
| Hydrogen Peroxide, 10%                        | Х      | 1        | Х     | 1    | 2      | Х          | 1    | Х    | X        | 2           | 1            | 1           | Х        |
| Hydrogen Peroxide, 30%                        | Х      | 2        | Х     | 1    | 2      | Х          | 1    | Х    | X        | 2           | 1            | 1           | Х        |
| Hydrogen Peroxide, 70%                        | X      | X        | Х     | 1    | -      | Х          | 1    | Х    | X        | 2           | 1            | 1           | X        |
| Hydrogen Peroxide, 90%<br>Hydrogen Sulfide    | ×<br>2 | X<br>X   | -     | -    | -      | -          | 1    | - 1  | 2        | 2           | 1            | -           | X<br>X   |
| Hydrogen Sulfide Aqueous Solution             | 2      | Х        | -     | -    | -      | -          | 1    | -    | X        | -           | -            | Х           | -        |
| Hydrogen Sulfide, Gas                         | -      | -        | -     | -    | -      | -          | -    | -    | -        | -           | -            | -           | -        |
| Hydrolube, Water Glycol                       | 2      | 1        | -     | -    | -      | Х          | 1    | -    | 1        | 1           | 1            | -           | 1        |
| Hydrolubric Oil, Houghton                     | -      | 2        | -     | -    | -<br>V | 2          | 1    | 1    | -        | -           | -            | -           | -        |
| Hydroquinone<br>Hykil No.6 (33%): Water (67%) | ^      | 2        | -     | -    | -      | -          | 1    | -    | 1        | -           | -            | -           | -        |
| Hypochlorous Acid (Under 120°F)               | Х      | X        | Х     | -    | 2      | -          | 1    | 1    | 2        | 2           | 2            | Х           | -        |
| Hypoid Grease (Parapoid 10-C)                 | -      | 1        | -     | -    | -      | -          | 1    | -    | -        | -           | -            | -           | -        |
| 1                                             |        |          |       |      |        |            |      |      |          |             |              |             |          |
| Imol, Imol S150, S220, S300,                  |        |          |       |      |        |            |      |      |          |             |              |             |          |
| S500                                          | -      | 1        | -     | -    | -      | 2          | 1    | 1    | 1        | 1           | 1            | 1           | -        |
| Industron 53<br>Ink (Printers)                | - 1    | 1        | -     | -    | -      | -          | 1    | - 1  | 2        | 2           | - 1          | -           | 2        |
| Ink Oil                                       | -      | 2        | -     | -    | -      | -          | 1    | -    | 1        | 1           | 1            | -           | 1        |
| Insulating Oil (Transformer)                  | 2      | 1        | 2     | -    | Х      | -          | 1    | -    | 1        | 1           | 1            | -           | 1        |
| Isobutyl Alcohol                              | 2      | 2        | 2     | 1    | -      | -          | 1    | 1    | 1        | 1           | 1            | 1           | 2        |
| lodine (Under 100°F)                          | X<br>2 | X        | -     | 1    | 2      | X<br>X     | 1    | 1    | 2        | 2           | 2            | X           | -        |
| Iodine Pentafluoride                          | X      | Х        | _     | _    | _      | -          | 1    | _    | x        | 2           | 2            | X           | _        |
| Isooctane                                     | 1      | 1        | 2     | 2    | 1      | 2          | 1    | 1    | 1        | 1           | 1            | 2           | 1        |
| Isooctyl Thioglucolate                        | -      | -        | -     | -    | -      | -          | 1    | 1    | -        | -           | -            | -           | -        |
| Isobutane - WET                               | X      | X        | -     | -    | -<br>V | X          | 1    | X    | X        | 1           | 1            | 2           | 1        |
| Isopropyl Acetate                             | 2      | 2        | 2     | 1    | 2      | 2          | 1    | 1    |          | 2           | 1            | 1           | 2        |
| Isopropyl Ether                               | X      | X        | X     | -    | -      | -          | 1    | 1    | 1        | 1           | 1            | 1           | 1        |
| J                                             |        |          |       |      |        |            |      |      |          |             |              |             |          |
| Fuel JP-3 (Under 100°F)                       | 2      | 1        | 2     | -    | Х      | 2          | 1    | 1    | 1        | 1           | 1            | 2           | 1        |
| Jet Fuel JP-4 (Under 100°F)                   | ОХ     | 1        | 2     | -    | Х      | -          | 1    | 1    | 1        | 1           | 1            | 2           | 1        |
| Jet Fuel JP-5                                 | Х      | 1        | Х     | -    | Х      | -          | 1    | 1    | 2        | 1           | 1            | 2           | 1        |
| Jet Fuel JP-0<br>Jet Fuel JP-x                | 2      | 1        | X     | -    | X      | -          | 1    | 1    | 2        | 1           | 1            | 2           | 1        |
| K                                             | ~      | <u> </u> |       |      |        |            |      |      |          |             | <u> </u>     | -           | <u> </u> |
| Kerosene                                      | Х      | 1        | 2     | 1    | Х      | -          | 1    | 1    | 1        | 1           | 1            | 1           | 1        |
| Ketchup                                       | 1      | 1        | -     | -    | -      | -          | 1    | 1    | -        | 1           | 1            | -           | -        |
| Ketones                                       | Х      | Х        | Х     | -    | Х      | Х          | 1    | 1    | 1        | 1           | 1            | 2           | 1        |
| L                                             |        |          |       |      |        |            |      |      |          |             |              |             |          |
| Lacquer Solvents                              | X      | X        | X     | -    | X      | 2          | 1    | 1    |          | 2           | 1            | 1           | 1        |
| Lactic Acid                                   | 1      | X        | x     |      | 1      | x          | 1    | -    | x        | 2           | 1            | X           | 2        |
| Lactic Acid (5%)                              | 2      | 1        | -     | -    | -      | -          | 1    | 1    | X        | 2           | 1            | 1           | Х        |
| Lactic Acid (5% Boiling)                      | Х      | Х        | -     | -    | -      | -          | 1    | -    | X        | 2           | 1            | 2           | Х        |
| Lactic Acid (10% Boiling)                     | Х      | Х        | -     | -    | -      | -          | 1    | -    | X        | 2           | 1            | Х           | Х        |
| Lactol                                        | 2      | 2        | 2     | - 1  | -      | -          | 1    | - 1  |          | 1           | 1            | 1           | 1        |
| Lasso (Ag Spray)                              | -      | -        | -     | -    | -      | -          | 1    | 1    | -        | 1           | 1            | -           | ^        |
| Latex                                         | 1      | 1        | -     | -    | Х      | -          | 1    | 1    | 1        | 1           | 1            | 1           | 1        |
| Lead Acetate                                  | Х      | Х        | -     | 1    | 2      | 1          | 1    | -    | 2        | 2           | 2            | Х           | 1        |
| Lead Arsenate                                 | 2      | 2        | -     | -    | -      | -          | 1    | -    | 1        | 1           | 1            | -           | -        |
| Lead Nitrate                                  | 2      | 2        | 1     | - 1  | 1<br>2 | 1          | 1    | Ĵ    |          | 2           | 2            | 1           | -        |
|                                               | 1      |          |       | 1    | 2      |            |      |      | <u>'</u> |             |              |             |          |

|      |       |       |      |      |     |       |      |      |       |     | Iviesityi Uxide                 |
|------|-------|-------|------|------|-----|-------|------|------|-------|-----|---------------------------------|
| )    | -     | Х     | 2    | 1    | 1   | 1     | 1    | 1    | 2     | 1   | Methane                         |
| 2    | -     | Х     | -    | 1    | 1   | 1     | 1    | 1    | 2     | 1   | Methoxychlor (Insecticide)      |
| <    | -     | Х     | -    | 1    | 1   | 2     | 1    | 1    | 2     | 1   | Methyl Acetate                  |
| (    | -     | Х     | -    | 1    | 1   | 2     | 1    | 1    | 2     | 1   | Methyl Acrylate                 |
| (    | -     | Х     | -    | 1    | 1   | 2     | 1    | 1    | 2     | 1   | Methyl Alcohol                  |
|      |       |       |      |      |     |       |      |      |       |     | Methyl Amine (25%               |
| 2)   | 1     | Y     |      | 1    | 1   | 1     | 1    | 1    | 1     | 1   | Aqueous Solution)               |
| 9    |       | Λ     | -    | 1    | 1   |       | 1    | 1    |       |     | Methyl Amine (60%)              |
| /    | _     | Y     | Y    | 1    | 1   | 1     | 1    | 1    | 2     | 1   | Methyl Amine (99%)              |
| \    | -     | ^     | ^    | 1    | 1   | 1     | 1    | 1    | 2     | -   | Methyl Bromide                  |
|      |       |       |      |      |     |       |      |      |       |     | Methyl Butyl Ketone (MBK)       |
| <    | -     | Х     | 2    | 1    | 1   | X     | 2    | 1    | 1     | 1   | Methyl Cellosolve (Under 100°F) |
| (    | -     | Х     | -    | 1    | 1   | X     | Х    | 1    | 1     | 1   | Methyl Chloride                 |
| (    | -     | 1     | Х    | 1    | -   | X     | 2    | 1    | Х     | 2   | Methyl Ethyl Ketone (MEK)       |
| -    | -     | -     | -    | 1    | 1   | X     | 2    | 1    | 1     | Х   | Methyl Formate                  |
| -    | -     | -     | -    | 1    | -   | X     | 2    | 1    | 2     | Х   | Methyl Isobutyl Ketone          |
|      | -     | -     | -    | 1    | -   | Х     | 2    | 1    | Х     | Х   | (MIBK, 100°F)                   |
| 2    | -     | -     | -    | 1    | -   | 1     | 1    | 1    | 1     | 1   | Methyl Isopropyl Ketone         |
|      | 1     | -     | -    | 1    | 1   | 1     | 1    | 1    | 1     | Х   | Methyl Methacrylate             |
| -    | -     | -     | -    | 1    | 1   | -     | 1    | 1    | -     | -   | Methyl Salicylate               |
|      | -     | Х     | -    | 1    | 1   | 1     | 1    | 1    | 1     | 1   | Methyl Sulfate (Dimethyl,       |
| -    | 1     | 2     | 1    | 1    | -   | 2     | 2    | 2    | Х     | 1   | Under 100°F)                    |
| -    | -     | -     | -    | 1    | -   | 1     | 1    | 1    | -     | -   | Methylene Chloride              |
| -    | -     | 1     | 1    | 1    | -   | 1     | 2    | 2    | -     | -   | Methylene Dichloride            |
|      | 1     | 2     | -    | 1    | -   | 1     | 1    | 1    | -     | -   | Mineral Oil (Under 120°F)       |
| atir | na fa | or tu | be s | tock | "Х" |       |      |      |       |     | Mineral Spirits                 |
| ac   | t De  | nver  | Pro  | duct | App | licat | ions | s De | partr | men |                                 |
|      |       |       |      |      |     |       |      |      |       |     |                                 |

| Rating Scale:                                        | G        | ate    | s H            | ose       | Po     | lym                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ers |        |        |       | iplir<br>tan | igs<br>ters |        |
|------------------------------------------------------|----------|--------|----------------|-----------|--------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|--------|--------|-------|--------------|-------------|--------|
| 1 Excellent                                          | Δ        | C      | C              | .1        |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 7   | ,      |        |       | (O           |             |        |
| 2 Good resistance                                    | <u> </u> | -      | U <sub>2</sub> | 0<br>10 N | lam    | 00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |     | •      |        | 130   | 1316         |             |        |
| Tracting recommended                                 |          |        | ()             |           | am     | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |     |        | eel    | stee  | stee         |             |        |
| <ul> <li>resting recommended</li> </ul>              | ene      |        | λ              |           | Ë      | ng of the second |     |        | St     | ss    | ss           | m           |        |
|                                                      | brdo     | rile   | rile/          | ш         | palo   | er rati                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Ш   | ы      | 5<br>0 | ainle | ainle        | mi          | 3SS    |
| Chemical Name                                        | Ne       | Ż      | Ż              | G         | Ŧ:     | 5 <u>8</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | РТ  | ź      | Sa     | Sta   | Sta          | Alu         | ä      |
| Lead, Tetraethyl (Under 100°F)                       | Х        | 2      | Х              | -         | Х      | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1   | 2      | -      | -     | -            | -           | -      |
| Lead, Tetramethyl                                    | X        | 2      | Х              | -         | Х      | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1   | -      | -      | -     | -            | -           | -      |
| Lecitnin<br>Liaroin (Petroleum Ether.                | 2        | X      | -              | -         | -      | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | I   | -      | -      | I     | I            | -           | -      |
| Under 120°F)                                         | Х        | 1      | -              | -         | Х      | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1   | -      | 2      | 1     | 1            | Х           | -      |
| Lime (Chlorinated, Free                              |          |        |                |           |        | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |     |        |        |       | 0            |             |        |
| Lime Bleach (Under 100°E)                            | -<br>X   | 1      | -<br>X         | 1         | -<br>X | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | -   | -      | -<br>X | - 2   | 2            | -           | -      |
| Lime Sulphur                                         | 1        | X      | -              | -         | -      | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 2   | 1      | 2      | 1     | 1            | Х           | Х      |
| Lime Sulfur (Under 135°F)                            | 1        | Х      | Х              | -         | 2      | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 2   | 1      | 2      | 1     | 1            | Х           | Х      |
| Lindane (Ag Spray)                                   | -<br>V   | - 2    | -<br>Y         | -         | -      | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1   | 1      | -<br>V | 1     | 1            | - 1         | -      |
| Linseed Oil                                          | x        | 1      | -              | -         | -      | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1   | 1      | 1      | 1     | 1            | 2           | 2      |
| Linseed Oil (Boiled)                                 | 2        | 2      | 1              | 1         | 1      | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1   | -      | 2      | 1     | 1            | 1           | 2      |
| Lubricating Oil (SAE 10, 20,                         | 2        | 0      |                |           |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1   | 1      | 4      | 1     | 1            | 1           | 4      |
| Lubricating Oils (Diester.                           | 2        | 2      | -              | -         | -      | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1   | 1      |        | I     | I            | I           | I      |
| Under 135°F)                                         | Х        | 2      | Х              | -         | -      | Х                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1   | 1      | 1      | 1     | 1            | 1           | 1      |
| M                                                    |          |        |                |           |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     |        |        |       |              |             |        |
| Machine Oil (Under 135°F)                            | 1        | 1      | 2              | -         | 2      | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1   | 1      | 1      | 1     | 1            | 1           | 1      |
| Magnesium Carbonate                                  | 1        | 1      | 1              | -         | 1      | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1   | - 1    | 2      | 2     | 2            | 1           | -      |
| Magnesium Hydroxide                                  | 2        | 2      | 2              | 1         | 1      | Х                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1   | -      |        | 1     | 1            | x           | X      |
| Magnesium Nitrate                                    | 2        | 2      | 2              | -         | 1      | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1   | -      | 2      | 2     | 2            | Х           | 1      |
| Magnesium Sulfate                                    | 2        | 2      | 2              | 1         | 1      | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1   | 1      | 2      | 2     | 2            | 2           | 2      |
| Malathion (Ag Spray Dilute)<br>Maleic Acid           | 2        | 2<br>X | -              | 1         | 1      | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1   | -      | 2      | 2     | 1            | -           | -      |
| Malic Acid                                           | -        | -      | -              | -         | -      | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1   | -      | 2      | 2     | 1            | -           | -      |
| Manganese Salts                                      | -        | 1      | 1              | -         | 1      | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1   | -      | -      | -     | -            | -           | -      |
| Maxmul (Penzoil Hydraulic Huid)<br>Mercuric Chloride | 2        | 1      | 2              | - 1       | - 1    | -2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1   | -<br>X |        | - 1   | 1            | -<br>X      | -<br>X |
| Mercuric Cyanide                                     | 1        | 2      | 2              | -         | 1      | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | -   | -      | 2      | 2     | 2            | X           | -      |
| Mercurous Nitrate (Under 120°F)                      | 1        | 2      | 2              | -         | 1      | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1   | -      | 1      | 1     | 1            | Х           | -      |
| Mercury<br>Mercityl Ovide                            | 1        | 2      | 2              | 1         | 1<br>v | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1   | 1      | 1      | 1     | 1            | X           | X      |
| Methane                                              | 2        | 1      | -              | -         | -      | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1   | -      | -      | 1     | 1            | -           | -      |
| Methoxychlor (Insecticide)                           | -        | -      | -              | -         | -      | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1   | Х      | 1      | 1     | 1            | -           | -      |
| Methyl Acetate                                       | X        | Х      | Х              | 1         | Х      | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1   | -      | 1      | 1     | 1            | 1           | 1      |
| Methyl Acrylate                                      |          | X<br>1 | X<br>1         | - 1       | ×<br>- | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1   | 1      |        | 1     | 1            | 1           | 2      |
| Methyl Amine (25%                                    |          |        |                |           |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     |        |        |       |              | -           | _      |
| Aqueous Solution)                                    | 2        | Х      | -              | -         | -      | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1   | -      | 1      | 1     | 1            | 1           | -      |
| Methyl Amine (60%)<br>Methyl Amine (99%)             | 2        | 2<br>X | -              | -         | -      | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1   | 2      |        | 1     | 1            | 1           | 2      |
| Methyl Bromide                                       | x        | Х      | Х              | -         | Х      | Х                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1   | 1      | 1      | 1     | 1            | X           | 1      |
| Methyl Butyl Ketone (MBK)                            | Х        | Х      | Х              | 2         | Х      | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1   | -      | 1      | 1     | 1            | 1           | 1      |
| Methyl Cellosolve (Under 100°F)<br>Methyl Chloride   | 2        | X      | -<br>Y         | 1<br>Y    | X      | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1   | -      | 2      | 2     | 2            | 2           | 1      |
| Methyl Ethyl Ketone (MEK)                            | x        | Х      | Х              | 2         | X      | Х                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1   | 1      | 1      | 1     | 1            | 2           | 1      |
| Methyl Formate                                       | 2        | Х      | Х              | -         | Х      | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1   | -      | 2      | 1     | 1            | 1           | 1      |
| Methyl Isobutyl Ketone                               |          | v      | v              | 0         | v      | v                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1   | 1      | 4      | 1     | 1            | 1           | 4      |
| Methyl Isopropyl Ketone                              | Â        | X      | X              | 2         | X      | X                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1   | 1      |        | 1     | 1            | 1           | 1      |
| Methyl Methacrylate                                  | Х        | Х      | Х              | 2         | 2      | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1   | -      | 2      | 2     | 2            | -           | -      |
| Methyl Salicylate                                    | 2        | 2      | 2              | -         | -      | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1   | -      | 1      | 1     | 1            | 1           | 1      |
| Under 100°F)                                         | x        | Х      | Х              | -         | Х      | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1   | 1      | 1      | 1     | 1            | -           |        |
| Methylene Chloride                                   | X        | Х      | Х              | Х         | X      | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1   | X      | 1      | 1     | 1            | Х           | 1      |
| Methylene Dichloride                                 | X        | Х      | Х              | -         | -      | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1   | 1      | 1      | 1     | 1            | X           | 1      |
| Mineral Oli (Under 120°F)                            | 1        | 1      | 1              | -         | X      | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1   | -      |        | 1     | 1            | 2           | 1      |
|                                                      |          |        |                |           |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     |        |        |       |              |             |        |

Ocover stock rating only; Ra \*Use Gates fuel hose or conta





## **Chemical Resistance Table**

| Rating Scale:                           | G                                            | ate  | es H  | ose | e Po | olym          | ers |     | 8            | Coi<br>& Ao | upliu<br>dap | ngs<br>ters | ;      | Rating Scale:                                                        |
|-----------------------------------------|----------------------------------------------|------|-------|-----|------|---------------|-----|-----|--------------|-------------|--------------|-------------|--------|----------------------------------------------------------------------|
| 2 Good resistance                       |                                              |      | Tra   | de  | Nar  | nes           |     |     |              | 4           | 9            |             |        | 2 Good resistance                                                    |
| Not recommended                         | Δ                                            | С    | C.    | J   |      |               | 7   | ,   |              | 1 30        | 31           |             |        | X Not recommended                                                    |
| Testing recommended                     | <u> </u>                                     | -    | 0     | -   |      | ŝ             | _   |     | ee           | stee        | stee         |             |        | Testing recommended                                                  |
| <ul> <li>resung recommended</li> </ul>  | ene                                          |      | M     |     | E    | ng of         |     |     | St           | ss          | ss           | m           |        | <ul> <li>resung recommended</li> </ul>                               |
|                                         | dc                                           | rile | rile/ | ш   | oalo | er rati       | Ш   | Ы   | ą            | inle        | inle         | mir         | ISS    |                                                                      |
| Chemical Name                           | Ne l                                         | Niti | Niti  | G   | Ŧ    | <b>P</b><br>S | Ы   | ź   | Ga           | Sta         | Sta          | Alu         | Bra    | Chemical Name                                                        |
| Mobile Therm 603                        | -                                            | 1    | -     | -   | -    | -             | 1   | -   | 1            | 1           | 1            | 1           | 1      | D                                                                    |
| Molasses (Under 120°F)                  | 2                                            | 2    | 2     | -   | 1    | 1             | 1   | -   | 2            | 1           | 1            | 2           | Х      | Pa lat                                                               |
| Monochlorobenzene                       | X                                            | Х    | Х     | Х   | Х    | Х             | 1   | -   | 1            | 1           | 1            | Х           | 1      | Paint Solvents (Oil Base)                                            |
| Monoethanolamine                        | X                                            | 2    | -     | 1   | Х    | -             | 1   | -   | 1            | 1           | 1            | 2           | 1      | Paints (Oil Base)                                                    |
| Motor Oile (Linder 125°E)               | -                                            | - 1  | -     | - 1 | -    | -             | 1   | - 1 | -            | 1           | 1            | - 1         | -      | Paint Thinner, Duco                                                  |
| Mould Oil                               | -                                            | -    | -     | -   | -    | -             | 1   | -   |              | 1           | 1            | -           | -      | Palmetic Acid                                                        |
| Muriatic Acid (Hydrochloric)            | X                                            | Х    | Х     | 1   | 2    | Х             | 1   | Х   | X            | X           | X            | Х           | Х      | Palm Oil                                                             |
| Mustard                                 | 1                                            | 2    | 1     | -   | 1    | -             | 1   | -   | Х            | 1           | 1            | 2           | -      | Paraffin (Petroleum)                                                 |
| N                                       |                                              |      |       |     |      |               |     |     |              |             |              |             |        | Paratormaldenyde<br>Peanut Oil (Less Than 100°F)                     |
| Nanhtha (Low Aromatic Content)          | X                                            | 2    | X     | 1   | X    | -             | 1   | 1   | 2            | 1           | 1            | 1           | 1      | Pentasol                                                             |
| Naphthalene (Tar Camphor)               | X                                            | X    | X     | 1   | X    | -             | 1   | 1   | 1            | 1           | 1            | 1           | 1      | Perchloric Acid                                                      |
| Naphthalene                             | X                                            | Х    | Х     | -   | Х    | -             | 1   | -   | 1            | 1           | 1            | -           | 1      | Perchloroethylene                                                    |
| Naphthenic Acid                         | -                                            | 2    | -     | -   | -    | -             | 1   | -   | -            | 2           | 1            | -           | -      | (Tetrachloroethylene)                                                |
| Natural Gas                             | -                                            | -    | -     | -   | -    | -             | 1   | -   | 1            | 1           | 1            | -           | 2      | Petroleum Ether                                                      |
| Nickel Acetate                          | -                                            | -    | -     | -   | -    | -             | 1   | -   | 1            | 1           | 1            | 1           | 1      | Petroleum Oil (Grude)                                                |
| Nickel Chloride                         | 2                                            | 2    | 2     | 1   | 2    | -             | 1   | 1   |              | 1           | 1            | 1           | 1      | Petroleum Oil (Above 250°F)                                          |
| Nickel Plating Solution                 | 2                                            | 2    | -     | -   | 2    | ×             | 1   | -   | 2            | 2           | 2            | _           | -      | Petroleum Oils (Under 100°F)                                         |
| Nickel Salts                            | 2                                            | -    | 1     | -   | -    | -             | 1   | -   | -            |             | -            | -           | -      | Petroleum Oils (Refined)                                             |
| Nicotine Salts                          | -                                            | -    | -     | -   | -    | 1             | 1   | -   | 1            | Х           | 2            | -           | -      | Petroleum Oils (Sour)                                                |
| Nitric Acid                             | X                                            | Х    | -     | -   | -    | -             | 1   | -   | X            | 1           | 1            | -           | Х      | Phenol (Carbolic Acid)                                               |
| Nitric Acid, 3 Molar                    | X                                            | Х    | -     | -   | -    | -             | 1   | -   | X            | 1           | 1            | -           | Х      | Phenol (70/30 Water)                                                 |
| Nitric Acid, Concentrated (Boiling)     | X                                            | Х    | -     | -   | -    | -             | 1   | Х   | X            | 2           | 2            | Х           | Х      | Phenol (85/15 Water)                                                 |
| Nitric Acid, Inhibited                  |                                              | v    |       |     |      |               | 1   |     |              | 1           | 1            | 1           | v      | Phorone (Disopropylidene Acelone)<br>Phosphate Esters (Concentrated) |
| Nitric Acid, Red Fuming (RNFA)          | ÎŶ                                           | X    | x     | -   | x    | x             | 1   | ×   | Ŷ            | 2           | 2            | 2           | X      | Phosphate Esters (3 Molar)                                           |
| Nitric Acid, 5% To 10%                  | X                                            | X    | X     | 1   | 2    | Х             | 1   | X   | x            | 2           | 2            | 1           | X      | Phosphate Esters (Dilute)                                            |
| Nitric Acid, 20%                        | X                                            | Х    | Х     | 1   | 2    | Х             | 1   | Х   | X            | 2           | 2            | Х           | Х      | Phosphoric Acid                                                      |
| Nitric Acid, 50% (Boiling)              | X                                            | Х    | Х     | Х   | Х    | Х             | 1   | Х   | Х            | 2           | 2            | Х           | Х      | Phosphoric Acid (3 Molar)                                            |
| Nitric Acid, 65% (Boiling)              | X                                            | Х    | Х     | Х   | Х    | Х             | 1   | Х   | X            | 2           | 2            | Х           | Х      | Phosphoric Acid (Concentrated)                                       |
| Nitric Acid & Hydrochloric Acid         | -                                            | Х    | -     | -   | -    | -             | 1   | -   | X            | X           | X            | X           | -      | Phosphoric Acid (1%)                                                 |
| Nitrophapa                              |                                              | ×    | ×     | 2   | X    | X             | 1   | 2   |              | 1           | 1            | 1           | 1      | Phosphoric Acid (10%)                                                |
| Nitrogen                                | $\begin{vmatrix} \hat{1} \\ 1 \end{vmatrix}$ | 1    | 2     | 1   | 1    | 1             | 1   | 1   |              | 1           | 1            | 1           | 1      | Phosphoric Acid (10% Hot)                                            |
| Nitrogen Oxide Up To 50%                | `                                            |      | 2     |     |      |               |     |     | <sup>•</sup> |             |              |             |        | Phosphoric Acid (50%)                                                |
| (Under 100°F)                           | 1                                            | 1    | 2     | 1   | 1    | -             | 1   | 1   | 1            | 1           | 1            | -           | Х      | Phosphoric Acid (50% Hot)                                            |
| Nitromethane                            | X                                            | Х    | Х     | -   | -    | -             | 1   | 1   | 1            | 1           | 1            | 1           | 1      | Phosphoric Acid (85%)                                                |
| Nitropropane                            | X                                            | Х    | Х     | -   | -    | -             | 1   | 1   | 1            | 1           | 1            | 1           | 1      | Phosphoric Acid (85% Hot)                                            |
| Nyvac 20 (WG), 30 (WG)                  | -                                            | 1    | -     | -   | -    | -             | 1   | -   |              | 1           | 1            | 1           | 1      | Phosphoric Acid (Aerated)                                            |
| Nyvac FR Fluid                          |                                              | 1    | -     | -   | -    | -             | 1   | -   |              | 1           | 1            | 1           | 1      | Photographic Developers                                              |
| N-Octane                                | x                                            | 2    | _     | 1   | X    | _             | -   | _   |              | 1           | 1            | -           | 1      | Photographic, Emulsions                                              |
|                                         |                                              |      |       |     |      |               |     |     |              | ·           | · ·          |             | ·      | Photographic, Fixing Solutions                                       |
|                                         | 2                                            | 2    | 2     | 1   |      |               | 1   | 1   | 1            | 1           | 1            |             | 2      | Phthalic Acid                                                        |
| Oils Crude                              | X                                            | 2    | -     | -   | -    |               | 1   | -   |              |             |              |             | -      | Picric Acid (Water Solution 100°                                     |
| Oil (SAE, Under 100°F)                  | 1                                            | 1    | 1     | 1   | 2    | 1             | 1   | 1   | 1            | 1           | 1            | 1           | 1      | Pinene<br>Pine Oil                                                   |
| Oleic Acid (Under 120°F)                | 2                                            | 2    | 2     | 1   | 2    | 1             | 1   | -   | 2            | 2           | 1            | 1           | 2      | Piperazine Hydrochloride                                             |
| Oleum                                   | X                                            | Х    | Х     | Х   | Х    | -             | 1   | Х   | -            | -           | 1            | -           | -      | Solution (34%)                                                       |
| Olive Oil                               | X                                            | 2    | 2     | 2   | Х    | -             | 1   | -   | 2            | 1           | 1            | 1           | 2      | Pitch                                                                |
| OS 45 Type III (OS45)                   | 1                                            | 2    | -     | -   | -    | -             | 1   | -   | -            | -           | -            | -           | -      | Plating Solutions (Chrome)                                           |
| US 45 Type IV (US45-1)                  |                                              | 2    | -     | -   | -    | -             | 1   | -   | -            | -           | -            | -           | -      | Plating Solutions (Other)                                            |
| US / U<br>Ovalic Acid (5% Hot And Cold) |                                              | 2    | -     | -   | -    | -             | 1   | - 2 | -<br>V       | - 2         | 1            | - 1         | -<br>Y | Polyester Resin                                                      |
| Oxalic Acid (10%)                       | 2                                            | 2    | -     | -   | -    | _             | 1   | 2   | x            | 2           | 1            | 1           | X      | Polyurethane Foam (Under 125°F)                                      |
| Oxalic Acid (10% Boiling)               | X                                            | X    | -     | -   | -    | -             | 1   | -   | X            | X           | X            | X           | Х      | Potassium Acetate                                                    |
| Oxalic Acid                             | X                                            | Х    | Х     | 1   | 2    | Х             | 1   | Х   | Х            | 2           | 1            | 2           | Х      | Potassium Bisulfite                                                  |
| Oxygen, Gaseous                         | -                                            | -    | -     | -   | -    | -             | 1   | -   | 1            | 1           | 1            | 1           | 1      | Potassium Bromate                                                    |
| Ozone (Dry)                             | 2                                            | Х    | 2     | 1   | 2    | 1             | 1   | 2   | 1            | 1           | 1            | 1           | 1      | Potassium Bromide                                                    |
| Uzone (Wet)                             | -                                            | Х    | -     | -   | -    | -             | 1   | -   | X            | 2           | 1            | 2           | -      | Potassium Carbonate (Potash)                                         |

| stance rabi                                       | e      |      |          |     |        |                           |      |     |          |             |              |             |     |
|---------------------------------------------------|--------|------|----------|-----|--------|---------------------------|------|-----|----------|-------------|--------------|-------------|-----|
| Rating Scale:<br>1 Excellent                      | G      | iate | s H      | ose | e Po   | olym                      | iers |     | 8        | Cou<br>& Ao | uplii<br>dap | ngs<br>ters | 5   |
| 2 Good resistance                                 |        |      | Tra      | de  | Na     | mes                       |      |     |          | 04          | 16           |             |     |
| X Not recommended                                 | А      | С    | $C_2$    | J   |        |                           | Z    | 2   | _        | el 3        | el 3         |             |     |
| <ul> <li>Testing recommended</li> </ul>           | oprene | ile  | rile/PVC | ш   | oalon  | ethane<br>er rating only) | щ    | on  | bon Stee | inless Ste  | inless Ste   | minum       | SS  |
| Chemical Name                                     | Neo    | Niti | ΖİŢ      | G   | Ŧ      | <b>P</b>                  | Б    | ź   | Ga       | Sta         | Sta          | Alu         | Bra |
| Р                                                 |        |      |          |     |        |                           |      |     |          |             |              |             |     |
| •                                                 | X      | -    | -        | -   | X      | X                         | 1    | 2   | -        | 1           | 1            | 1           | 1   |
| int Solvents (Oil Base)                           | X      | Х    | -        | -   | Х      | Х                         | 1    | 2   | -        | 1           | 1            | 1           | 1   |
| ints (Oil Base)                                   | -      | 1    | -        | -   | 1      | -                         | 1    | 1   | -        | -           | -            | -           | -   |
| int Thinner, Duco                                 | 2      | 1    | -        | -   | -      | -                         | 1    | 1   | 2        | 2           | 1            | 2           | Х   |
| Imetic Acid                                       | 2      | 2    | 2        | 1   | X      | 1                         | 1    | 1   | 2        | 2           | 1            | 1           | X   |
| IM UII<br>raffin (Petroleum)                      | 2      | 1    | 2        | - 1 | 2      | -                         | 1    | - 1 |          | 1           | 1            | 1           | 1   |
| raformaldehvde                                    | 2      | 2    | 2        | -   | 2      | 2                         | 1    | -   | 1        | 1           | 1            | 1           | -   |
| anut Oil (Less Than 100°F)                        | 2      | 1    | 2        | -   | -      | -                         | 1    | -   |          | 1           | 1            | 1           | 1   |
| ntasol                                            | 2      | 2    | 2        | -   | 2      | -                         | 1    | 1   | 1        | 1           | 1            | 1           | 1   |
| rchloric Acid                                     | Х      | Х    | -        | -   | 2      | Х                         | 1    | Х   | X        | 2           | 1            | Х           | -   |
| rchloroethylene                                   |        |      |          |     |        |                           |      |     |          |             |              |             |     |
| Tetrachloroethylene)                              | X      | X    | Х        | 2   | Х      | -                         | 1    | 2   | 1        | 1           | 1            | Х           | X   |
| troleum Ether<br>troleum Oil (Crude)              | ×      | 2    | -        | 1   | -      | -                         | 1    | -   | 2        | 1           | -            | -           | 1   |
| troleum Oil (Below 250°F)                         | 2      | 1    | _        | _   | _      | -                         | 1    | _   |          | _           | _            | _           | _   |
| troleum Oil (Above 250°F)                         | X      | X    | -        | -   | -      | -                         | 1    | -   | -        | -           | -            | -           | -   |
| troleum Oils (Under 100°F)                        | 2      | 1    | 2        | -   | 2      | 2                         | 1    | -   | 1        | 1           | 1            | 1           | 1   |
| troleum Oils (Refined)                            | 2      | 1    | 2        | -   | 2      | 2                         | 1    | 1   | 1        | 1           | 1            | 1           | 1   |
| troleum Oils (Sour)                               | 2      | 2    | -        | -   | Х      | 2                         | 1    | -   | 2        | 1           | 1            | 1           | Х   |
| enol (Carbolic Acid)                              | X      | Х    | Х        | 1   | Х      | Х                         | 1    | Х   | 2        | 1           | 1            | 1           | Х   |
| enol (70/30 Water)                                | X      | X    | -        | -   | -      | -                         | 1    | -   | -        | 1           | 1            | 1           | -   |
| vrone (Diisonronvlidene Acetone)                  | Ŷ      | x    | -        | -   | ×      | Ŷ                         | 1    | -   |          | 1           | 1            |             | 1   |
| osphate Esters (Concentrated)                     | x      | x    | -        | Х   | X      | X                         | 1    | 2   | -        | -           | -            | -           | -   |
| osphate Esters (3 Molar)                          | Х      | Х    | -        | 2   | 2      | Х                         | 1    | 2   | -        | -           | -            | -           | -   |
| osphate Esters (Dilute)                           | Х      | Х    | -        | 1   | 1      | Х                         | 1    | 2   | -        | -           | -            | -           | -   |
| osphoric Acid                                     | 2      | 2    | -        | -   | -      | -                         | 1    | -   | -        | -           | 2            | -           | -   |
| osphoric Acid (3 Molar)                           | X      | Х    | -        | -   | -      | -                         | 1    | -   | -        | -           | -            | -           | -   |
| osphoric Acid (Concentrated)                      |        | X    | -        | -   | -      | -                         | 1    | -   | -        | -           | - 1          | -           | -   |
| osphoric Acid (1%)                                | 2      | ×    | -        | -   | -      | -                         | 1    | -   |          | 1           | 1            | -           | X   |
| osphoric Acid (10%)                               | 2      | X    | -        | -   | -      | -                         | 1    | -   | x        | -           | 1            | Х           | X   |
| osphoric Acid (10% Hot)                           | 2      | Х    | -        | -   | -      | -                         | 1    | -   | X        | -           | 1            | Х           | Х   |
| osphoric Acid (50%)                               | 2      | 2    | 2        | 1   | 1      | Х                         | 1    | Х   | X        | 2           | 1            | Х           | 2   |
| osphoric Acid (50% Hot)                           | 2      | Х    | -        | -   | -      | -                         | 1    | -   | X        | Х           | 2            | Х           | Х   |
| osphoric Acid (85%)                               | 2      | Х    | -        | 1   | 1      | Х                         | 1    | Х   | X        | 2           | 2            | Х           | Х   |
| osphoric Acid (85% Hot)                           | 2      | Х    | -        | -   | -      | -                         | 1    | -   |          | Х           | X            | Х           | Х   |
| osphoric Acid Air Free                            | -      | -    | -        | -   | -      |                           | 1    | -   | Îx       | -           | -            | x           | -   |
| otographic Developers                             | 1      | 1    | -        | -   | -      | -                         | 1    | -   | X        | 1           | 1            | -           | -   |
| otographic, Emulsions                             | -      | -    | -        | -   | -      | -                         | 1    | -   | -        | -           | -            | -           | -   |
| otographic, Fixing Solutions                      | 2      | -    | -        | -   | 2      | -                         | 1    | -   | -        | 1           | 1            | -           | -   |
| thalic Acid                                       | -      | -    | -        | -   | -      | -                         | -    | -   | 2        | 2           | 1            | 2           | -   |
| ric Acid (Water Solution 100°F)                   | 2      | 2    | 2        | -   | 2      | -                         | 1    | Х   |          | 1           | 1            | X           | X   |
| iene<br>Io Oil                                    | ×      | 2    | -        | 2   | -      | -                         | 1    | - 1 |          | 1           | 1            | 1           | I   |
| erazine Hydrochloride                             |        | 2    | -        | 2   | ~      | -                         | 1    | '   | '        |             |              |             | -   |
| Solution (34%)                                    | -      | 2    | -        | -   | -      | -                         | 1    | -   | -        | -           | -            | -           | -   |
| ch                                                | 2      | 1    | -        | -   | 2      | 2                         | 1    | 1   | -        | -           | -            | -           | -   |
| ting Solutions (Chrome)                           | Х      | Х    | -        | -   | -      | Х                         | 1    | Х   | -        | Х           | Х            | -           | -   |
| ting Solutions (Other)                            | -      | 1    | -        | -   | -      | -                         | 1    | -   | -        | -           | -            | -           | -   |
| lyester Resin                                     | -      | -    | -        | -   | -      | -                         | -    | 2   | -        | -           | -            | -           | -   |
| yureuriarie Foam (Under 125°F)<br>tassium Acetate | 2      | - 2  | -        | - 1 | -<br>2 | -<br>Y                    | 1    | -   | -<br>2   | - 1         | - 1          | -<br>V      | -   |
| tassium Bicarbonate                               | 1      | 1    | -        | -   | 1      | -                         | 1    | 1   |          | 2           | 2            | 1           | -   |
| tassium Bisulfite                                 | -      | 1    | -        | -   | -      | -                         | 1    | 1   | <u>-</u> | -           | -            | -           | -   |
| tassium Bromate                                   | -      | -    | -        | -   | -      | -                         | 1    | -   | -        | -           | -            | -           | -   |
| tassium Bromide                                   | 1      | 1    | -        | -   | 1      | 2                         | 1    | 1   | Х        | Х           | 2            | Х           | -   |
| tassium Carbonate (Potash)                        | 1      | 1    | 1        | 1   | 1      | 2                         | 1    | 1   | 2        | 1           | 1            | Х           | Х   |

| HOSE/CPLG.<br>Selection                     |
|---------------------------------------------|
| GLOBALSPIRAL<br>Couplings                   |
| PCM/PCS<br>Ferrules                         |
| MEGACRIMP<br>Couplings                      |
| Power<br>Crimp<br>Couplings                 |
| LOW<br>PRESSURE<br>COUPLINGS                |
| POLARSEAL<br>Couplings                      |
| C14<br>Couplings                            |
| PCTS<br>Thermo-<br>Plastic<br>Couplings     |
| FIELD<br>ATTACHABLE<br>G1 & G2<br>Couplings |
| FIELD<br>ATTACHABLE<br>C5<br>COUPLINGS      |
| SURELOK AIR<br>Brake<br>Couplings           |
| QUICK<br>DISCONNECT<br>COUPLERS             |
| NEW BALL<br>VALVES                          |
| ACCESSORIES                                 |

Equipment And Parts

O Cover stock rating only; Rating for tube stock "X" \*Use Gates fuel hose or contact Denver Product Applications Department.



The World's Most Trusted Name in Belts, Hose and Hydraulics.



## **Hose & Coupling Section**

EQUIPMENT

#### HOSE/CPLG. SELECTION

GLOBALSPIRAL COUPLINGS

PCM/PCS FERRULES

MEGACRIMP COUPLINGS

POWER CRIMP COUPLINGS LOW PRESSURE COUPLINGS

> POLARSEAL COUPLINGS

C14 COUPLINGS

PCTS THERMO-PLASTIC COUPLINGS

FIELD ATTACHABLE G1 & G2 COUPLINGS

FIELD ATTACHABLE C5 COUPLINGS

SURELOK AIR BRAKE COUPLINGS

QUICK DISCONNECT COUPLERS

NEW BALL VALVES

ACCESSORIES

EQUIPMENT AND PARTS

**C59** 

| <b>Chemical R</b> | esistance Table |
|-------------------|-----------------|
|-------------------|-----------------|

| Rating Scale:                             | G        | iate   | s H    | lose  | e Pc   | olym        | ers  |        | 8      | Coi<br>k Ad | ıplir<br>dap | ngs<br>ters | 5      | Rating Scale:                           | G      | iate   | es H  | lose | e Po | olym          | ers |   | (<br>& | Cou<br>Ad | plin<br>lapt | ngs<br>ters |     |
|-------------------------------------------|----------|--------|--------|-------|--------|-------------|------|--------|--------|-------------|--------------|-------------|--------|-----------------------------------------|--------|--------|-------|------|------|---------------|-----|---|--------|-----------|--------------|-------------|-----|
| 2 Good resistance                         |          |        | Tra    | ide   | Nar    | nes         |      |        |        | 4           | 9            |             |        | Cood resistance                         |        |        | Trac  | de l | Nan  | nes           |     |   |        | 4         | 9            |             |     |
| Ket recommended                           | Δ        | C      | C      |       |        |             | 7    | ,      |        | 8           | 9            |             |        | Z Good resistance                       | Δ      | C      | C     | .1   |      |               | 7   | , |        | 8         | 3            |             |     |
|                                           | <u> </u> | -      | 02     | -     |        | 2           |      | -      | ee     | stee        | stee         |             |        |                                         | ~      | -      | 02    |      |      | S             |     | - | ee     | stee      | stee         |             |     |
| <ul> <li>resting recommended</li> </ul>   | ene      |        | PXC    |       | Ľ      | ne          |      |        | St     | ss          | SS           | ш           |        | <ul> <li>Testing recommended</li> </ul> | ene    |        | M     |      | Ę    | ng on         |     |   | St     | s         | ss           | m           |     |
|                                           | br       | rile   | rile/  | ш     | oalc   | er rati     | Ш    | Ы      | 1<br>Q | inle        | inle         | min         | ISS    | 2                                       | opre   | rile   | rile/ | ш    | oalc | er rati       | 벁   | 5 | ōđ     | inle      | inle         | min         | ISS |
| Chemical Name                             | Ne       | Nit    | Nit    | СР    | H      | <b>2</b> 00 | ΡT   | N      | Ca     | Sta         | Sta          | Alu         | Bro    | Chemical Name                           | Ň      | Nit    | Nit   | СР   | HyI  | <b>D</b><br>S | ΡT  | ž | Cal    | Sta       | Sta          | Alu         | Bra |
| Potassium Chlorate                        | 1        | 1      | -      | -     | -      | 2           | 1    | 1      | 2      | 2           | 2            | 2           | -      | D                                       |        |        |       |      |      |               |     |   |        |           |              |             | _   |
| Potassium Chloride (1% To 5%)             | 1        | 1      | -      | 1     | -      | 2           | 1    | 1      | 1      | 2           | 2            | Х           | Х      | Bamrod (Ag Spray)                       | _      | _      | -     | -    | _    |               | 1   | 1 | 1      | 1         | 1            | 1           | 1   |
| Potassium Chloride (Boiling)              | -        | -      | -      | -     | -      | -           | 1    | -      | -      | 2           | 2            | -           | X      | Rando Oils                              | -      | 1      | -     | -    | -    | 2             | 1   | i | 1      | 1         | 1            | 1           | 1   |
| Potassium Cyanide<br>Potassium Dichromate |          | 1      | Ĵ      | 1     | -      | -           | 1    | 2      | 2      | 2           | 2            | ×<br>2      | ×      | Rape Seed Oil                           | 2      | Х      | -     | -    | Х    | -             | 1   | 2 | 1      | 1         | 1            | 1           | 1   |
| Potassium Ferrocvanide                    | -        | -      | _      | -     | _      | _           | 1    | -      | 2      | 1           | 1            | 2           | _      | Red Oil (Comm. Oleic Acid,              |        |        |       |      |      |               |     |   |        |           |              |             |     |
| Potassium Fluoride                        | -        | -      | -      | -     | -      | -           | 1    | -      | -      | -           | -            | -           | -      | MIL-H-5606)                             | 2      | 2      | 2     | 1    | 2    | -             | 1   | 1 | 2      | 2         | 1            | 1           | 2   |
| Potassium Hydroxide                       | 2        | 2      | -      | -     | -      | -           | 1    | -      | 1      | 1           | 1            | -           | -      | Refined Wax (Petroleum)                 | 2      | 1      | 2     | -    | -    | 2             | 1   | 1 | 1      | 1         | 1            | -           | 1   |
| Potassium Hydroxide (5%)                  | 1        | 1      | -      | -     | -      | -           | 1    | 1      | 2      | 2           | 2            | Х           | Х      | Richfield Weed Killer                   | ×      | 2      | -     | -    | ×    | -             | 1   | _ | -      | -         | -            | -           | -   |
| Potassium Hydroxide                       |          |        |        |       |        |             | -    |        |        | 0           |              | v           | v      | Round Up                                | 2      | 2      | -     | -    | -    | -             | 1   | 1 | 2      | 1         | 1            | 1           | 1   |
| (27% BOIIING)<br>Potassium Hydroxide      | -        | -      | -      | -     | -      | -           | I    | -      | 2      | 2           | I            | X           | X      | Rubilene Oils                           | -      | 1      | -     | -    | -    | 2             | 1   | 1 | -      | -         | -            | -           | -   |
| (30%, Caustic Potash)                     | -        | -      | -      | 1     | -      | -           | 1    | -      | -      | -           | -            | -           | -      | 9                                       |        |        |       |      |      |               |     |   |        |           |              |             |     |
| Potassium Hydroxide                       |          |        |        |       |        |             |      |        |        |             |              |             |        | Salicylic Acid                          | 1      | Х      | -     | -    | -    | -             | 1   | 1 | 1      | 1         | 1            | 2           | -   |
| (50% Boiling)                             | -        | -      | -      | -     | -      | -           | 1    | -      | 2      | 2           | 2            | Х           | Х      | Salt Water (Sea Water)                  | 2      | 2      | 2     | -    | 2    | 1             | 1   | 1 | 2      | 1         | 1            | Х           | 2   |
| Potassium Hydroxide (70%)                 | -        | Х      | -      | -     | -      | -           | 1    | -      | -      | -           | -            | Х           | Х      | Santosafe W-G15, W-G20,                 |        |        |       |      |      |               |     |   |        |           |              |             |     |
| Potassium Hydroxide (70% Hot)             | -        | -      | -      | -     | -      | -           | 1    | -      | X      | -           | -            | Х           | Х      | W-G30                                   | -      | 1      | -     | -    | -    | 2             | 1   | 1 | 1      | 1         | 1            | 1           | 1   |
| Potassium liotide                         |          | 1      | -      | - 1   | -      | - 1         | 1    | 1      | 1      | 2           | 2            | - 2         | - 2    | Santo Sate 300                          | Х      | Х      | -     | -    | -    | -             | 1   | - | 1      | 1         | 1            | 1           | -   |
| Potassium Nitrate (1% To 5%)              |          | 1      | _      | -     | _      | -           | 1    | -      | 1      | 1           | 1            | 1           | 2      | Sewage                                  | 2      | 2      | 2     | 1    | 2    | -             | 1   | 1 | x      | 1         | 1            | 2           | 1   |
| Potassium Permanganate                    | 1        | 2      | -      | -     | -      | -           | 1    | 2      | 1      | 2           | 2            | 2           | -      | SFR Fluid B (Shell)                     | -      | X      | -     | -    | -    | -             | 1   | - | -      | -         | -            | -           | -   |
| Potassium Permanganate (5%)               | 1        | 1      | -      | -     | -      | -           | 1    | 1      | 1      | 1           | 1            | 1           | -      | SFR Fluid C (Shell)                     | -      | Х      | -     | -    | -    | -             | 1   | - | -      | -         | -            | -           | -   |
| Potassium Persulfate                      | -        | -      | -      | -     | -      | -           | 1    | -      | -      | -           | -            | -           | -      | Shellac                                 | 2      | 1      | -     | -    | -    | -             | 1   | 1 | 1      | 1         | 1            | 1           | -   |
| Potassium Phosphate                       |          | -      | -      | -     | 1      | -           | 1    | -      | X      | 2           | 2            | X           | -      | Shellac (Bleached)                      | 2      | 1      | -     | -    | -    | -             | 1   | 1 | 1      | 1         | 1            | 1           | 2   |
| Potassium Sulfate - 1% & 5%               |          | 1      | -      | 1     | -      | -           | 1    | 1      | 1      | 2           | 2            | 1           | -<br>Y | Shellac (Urange)                        | 2      | 1      | -     | -    | -    | -             | 1   | 1 | 1      | 1         | 1            | 1           | 2   |
| Potassium Sulfide                         |          | 1      | -      | _     | _      | _           | 1    | -      | 2      | 2           | 2            | -           | -      | Silicone Oils                           | 2      | 2      | 2     | -    | 2    |               | 1   | 1 | 1      | 1         | 1            | 1           | 1   |
| Potassium Sulfite                         | 1        | 1      | -      | 1     | -      | -           | 1    | -      | 1      | 1           | 1            | 1           | -      | Silver Cyanide                          | 1      | -      | -     | -    | -    | -             | 1   | - | 1      | 1         | 1            | X           | -   |
| Potassium Thiosulfate                     | 1        | -      | -      | -     | 1      | -           | 1    | -      | -      | -           | -            | -           | -      | Silver Nitrate                          | 1      | 1      | 1     | 1    | 1    | -             | 1   | 1 | 2      | 1         | 1            | 1           | 2   |
| Primatol A, S, P (Ag Spray)               | -        | -      | -      | -     | -      | -           | 1    | -      | -      | -           | -            | -           | -      | Skydrol 500A& 7000                      | Х      | Х      | Х     | 2    | Х    | -             | 1   | 1 | 1      | 1         | 1            | 1           | -   |
| Propane Gas                               |          | X      | -      | -     | -      | Х           | 1    | -      | 1      | 1           | 1            | -           | 1      | Soap Oil                                | Х      | X      | -     | -    | X    | -             | 1   | - | 1      | 1         | 1            | ÷           | ÷   |
| Propionic Acia<br>Propyl Acetate          |          | X      | -      | 2     | -      | -           | 1    | -      | 1      |             | 2            | 2           | -      | Soap Solutions                          | 2      | 1      | 2     | 1    | 1    | 1             | 1   | 1 | 1      | 1         | 1            | 1<br>V      | 1   |
| Propyl Alcohol                            |          | 1      | 2      | 1     | -      | Х           | 1    | 1      | 1      | 1           | 1            | -           | 2      | Soda Water                              | -      | -      | -     | -    | -    | 1             | 1   | 1 | -      | -         | -            | -           | -   |
| Propylene (Liquid Or Gas, Ambient)        | X        | Х      | -      | 1     | -      | -           | 1    | 2      | 1      | 1           | 1            | 1           | -      | Sodium Acetate                          | Х      | Х      | Х     | 1    | Х    | 2             | 1   | 1 | 1      | 1         | 1            | 1           | 1   |
| Propylene Dichloride                      | -        | -      | -      | -     | -      | -           | 1    | -      | 1      | 2           | 1            | Х           | -      | Sodium Benzoate                         | -      | -      | -     | -    | -    | 1             | 1   | - | -      | -         | -            | -           | -   |
| Propylene Glycol                          | 1        | 1      | -      | 1     | 1      | 1           | 1    | 2      | 1      | 1           | 1            | -           | -      | Sodium Bicarbonate                      | 1      | 1      | 1     | 1    | 1    | 1             | 1   | 1 | 2      | 1         | 1            | 2           | 2   |
| Propylene Oxide                           | X        | X      | -      | -     | -      | -           | -    | -      | 2      | 1           | 1            | 2           | -      | Sodium Bisulfate (Niter Cake)           | 1      | 1      | 1     | 1    | 1    | 1             | 1   | 1 | Х      | 2         | 1            | Х           | Х   |
| Punna Insecucide<br>Puronale RX Oils      |          | 1      | -      | -     | -      | - 2         | 1    | 2      | 1      | 1           | 1            | 1           | 2      | Sodium Bisulfite                        | 1      | 1      | 1     | 1    | 1    | 1             | 1   | 1 | 2      | 1         | 1            | 2           | -   |
| Pyranol. Transformer Oil                  | 2        | 1      | -      | -     | -      | -           | 1    | -      | 1      | 1           | 1            | 1           | -      | Sodium Carbonate                        | 1      | 1      | 1     | 1    | 1    | 1             | 1   | 1 | 2      | 2         | 2            | x           | 2   |
| Pydraul                                   | Х        | Х      | -      | -     | -      | -           | 1    | -      | -      | -           | -            | -           | -      | Sodium Chlorate                         | 2      | 1      | -     | -    | 1    | 1             | 1   | 1 | 2      | 2         | 2            | Х           | -   |
| Pydraul 10E, 29E-LT, 30E, 60,             |          |        |        |       |        |             |      |        |        |             |              |             |        | Sodium Chloride                         | 1      | 1      | 1     | 1    | 1    | 1             | 1   | 1 | 2      | 2         | 1            | Х           | Х   |
| 65E, 115E                                 | X        | Х      | -      | 2     | -      | -           | 1    | -      | 1      | 1           | 1            | 1           | 1      | Sodium Chloride - 2%                    | 1      | 1      | -     | -    | -    | -             | 1   | 1 | 2      | 2         | 1            | Х           | Х   |
| Pydraul 135<br>Pydraul 150                | -        | X      | -      | 2     | -      | -           | 1    | 2      | 1      | 1           | 1            | - 1         | - 1    | Sodium Chloride - 5%                    | 1      | 1      | -     | -    | -    | -             | 1   | 1 | -      | 2         | 1            | Х           | X   |
| Pydraul 280                               | Â        | x      | x      | 2     | Ŷ      | 2           | 1    | 2      | 1      | 1           | 1            | -           | -      | Sodium Chloride Saturated               | 1      | 1      | -     | -    | -    | -             | 1   | - | -      | 2         | 1            | Y           | ~   |
| Pydraul 312                               | X        | Х      | Х      | 2     | -      | 2           | 1    | 1      | 1      | 1           | 1            | -           | -      | Sodium Chloride Saturated               | '      |        |       |      |      |               |     | · |        |           |              | Λ           |     |
| Pydraul 50E                               | -        | -      | -      | 2     | -      | 2           | 1    | 1      | 1      | 1           | 1            | -           | -      | (Boiling)                               | -      | -      | -     | -    | -    | -             | 1   | - | -      | 2         | 1            | Х           | -   |
| Pydraul 540                               | Х        | Х      | Х      | 2     | Х      | Х           | 1    | Х      | 1      | 1           | 1            | -           | -      | Sodium Chloride Slurry                  | -      | -      | -     | -    | -    | -             | 1   | - | -      | -         | -            | -           | -   |
| Pydraul 625                               | X        | Х      | Х      | 2     | Х      | 2           | 1    | 2      | 1      | 1           | 1            | -           | -      | Sodium Cyanide                          | 1      | 1      | 1     | 1    | 1    | 1             | 1   | 1 | 2      | 1         | 1            | Х           | Х   |
| Pyuraul A-200<br>Pydraul F-9              | X        | X<br>X | X<br>Y | 2     | X<br>Y | X<br>2      | 1    | 2<br>1 | 1      | 1           | 1            | -           | -      | Sodium Dichromate                       | 2      | 1      | -     | 1    | 2    | 1             | 1   | 1 | -      | -         | -            | -           | -   |
| Pyridine (50%)                            | x        | Х      | -      | -     | X      | 1           | 1    | -      | 1      | 1           | 1            | 1           | 1      | Sodium Ferrocyanide                     | -      | -      | -     | -    | -    | -             | 1   |   | 2      | -         | -            | 2           | -   |
| Pyrogard 160, 230, 630                    | -        | -      | -      | -     | -      | -           | 1    | -      | 1      | 1           | 1            | -           | -      | Sodium Fluoride                         | -      | 1      | -     | -    | -    | _             | 1   | _ | 2      | 2         | 2            | _           | -   |
| Pyrogard 51, 53, 55                       | -        | Х      | -      | -     | -      | -           | 1    | -      | 1      | 1           | 1            | -           | -      | Sodium Fluoride (5%)                    | -      | 1      | -     | -    | -    | -             | 1   | 1 | 2      | 2         | 2            | -           | -   |
| Pyrogard C, D                             | -        | 1      | -      | -     | -      | 2           | 1    | 1      | 1      | 1           | 1            | 1           | 1      | Sodium Fluoride (70%)                   | -      | -      | -     | -    | -    | -             | 1   | - | -      | -         | 2            | -           | -   |
| Q                                         |          |        |        |       |        |             |      |        |        |             |              |             |        | Sodium Hydrosulfide                     | 1      | Х      | -     | -    | -    | -             | 1   | - | -      | -         | -            | -           | -   |
| Quench Oil                                | 2        | 2      | -      | -     | -      | -           | 1    | -      | -      | 1           | 1            | 1           | -      | Soaium Hyarosultite<br>Sodium Hydroxido | -<br>0 | -<br>0 | -     | -    | -    | -             | 1   | - | - 2    | -         | -            | -           | -   |
| Quintolubric 822                          | 2        | 1      | -      | -     | -      | -           | 1    | -      | 1      | 1           | 1            | 1           | 1      | Sodium Hydroxide (3 Molar)              | 2      | 2      | -     | -    | -    | -             | 1   | - | -      | _         | -            | -           | X   |
| OCover stock rati                         | ng o     | nly;   | Rati   | ng fo | or tu  | be s        | tock | "X"    |        |             |              |             |        | Sodium Hydroxide (10%)                  | -      | -      | -     | 1    | -    | -             | 1   | _ | -      | -         | -            | -           | -   |

\*Use Gates fuel hose or contact Denver Product Applications Department.





| 2         Constructor<br>X Intercommended         Torde Alones<br>X Intercommended         Torde Alones<br>X Intercommended         Z Constructor<br>X Intercommended         Torde Alones<br>X Intercommended         Discretion<br>X I                                                                                                                                                                                                                                                                                                      | Rating Scale:<br>1 Excellent                             | 0      | Gat    | es    | Но     | se   | Po     | lym            | ers  |        | ξ        | Co<br>& A | upli<br>dap | ngs<br>ter | 5      | _ | Rating Scale:<br>1 Excellent                                       | (        | Gat           | es       | Но             | se       | Pol      | ym       | ers |      | (<br>8      | Cou    | ıplir<br>dap | ngs<br>ters | 5      | _ | SELECTION     |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------|--------|--------|-------|--------|------|--------|----------------|------|--------|----------|-----------|-------------|------------|--------|---|--------------------------------------------------------------------|----------|---------------|----------|----------------|----------|----------|----------|-----|------|-------------|--------|--------------|-------------|--------|---|---------------|
| A. U. C. J.         X. M. Horsmannelski         A. O. C. J.         X. M. Horsmannelski         A. O. C. J.         Difference         Difference <thdifference< th="">         Difference</thdifference<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 2 Good resistance                                        |        |        | Т     | rad    | le N | lan    | nes            |      |        |          | 4         | 9           |            |        | - | 2 Good resistance                                                  |          |               | Т        | rac            | le l     | Van      | nes      |     |      |             | 4      | 9            |             |        | _ | GLOBAL SPIRAL |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | X Not recommended                                        | A      | С      | ; c   | 2      | J    |        |                | Z    | 2      | _        | el 30     | el 31       |            |        |   | X Not recommended                                                  | A        | (             | 2 (      | C <sub>2</sub> | J        |          |          | Z   |      | _           | el 30  | el 31        |             |        |   | COUPLINGS     |
| Chemical Name         Soluti Module (20)         Soluti Modue                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <ul> <li>Testing recommended</li> </ul>                  | e      |        | ç     | 2      |      |        | (juc           |      |        | Stee     | Ste       | Ste         | ۶          |        |   | <ul> <li>Testing recommended</li> </ul>                            | e        |               | ç        | ų              |          |          | (juc     |     |      | Stee        | Ste    | Ste          | ۶           |        |   |               |
| Chematical Nume         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                          | oren   | đ      |       | Ĺ<br>D |      | alon   | nane<br>rating |      | c      | uo<br>Uo | less      | less        | inur       | ŝ      |   |                                                                    | oren     | d             | į        | e/P/           |          | alon     | rating . |     | ۲    | uo<br>Si uo | less   | less         | inur        | ŝ      |   | PCM/PCS       |
| Soluti Mysche (DS Cul)         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1 <th1< th="">         1         <th1< th=""> <th1< th=""></th1<></th1<></th1<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Chemical Name                                            | Neo    | Nitri  | Nitri |        | GPE: | Å<br>H |                | PTFE | Nylo   | Carb     | Stain     | Stain       | Alum       | Bras   |   | Chemical Name                                                      | Neor     | Ni+ri         |          | Nitri          | CPE<br>S | HVP<br>H |          | PTF | Nylo | Carb        | Stain  | Stain        | Alum        | Bras   | _ | FERRULES      |
| Solution                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Sodium Hydroxide (20% Cold)                              |        | 2      | -     | -      | -    | -      | -              | 1    | 1      | 1        | 1         | 1           | X          | X      |   | Sulfuric Acid, Aerated, No Velocity                                |          | -             |          | -              | -        | -        | -        | 1   | -    | 2           | 2      | 2            | X           | -      |   |               |
| Side Produce Drive Constant Produce Drive Dr | Sodium Hydroxide (20% Hot)                               |        | 2      | 2     | -      | 1    | 1      | -              | 1    | 2      | 2        | 1         | 1           | X          | X      |   | Sulfuric Acid, All Free No Velocity<br>Sulfuric Acid, Concentrated | X        | >             |          |                | -        | 2        | -        | 1   | -    | -           | 1      | 2            | -           | -      |   | MEGACRIMP     |
| Soluti Microbis (5%)         1         2         1         X         X         Z         Z         X         Siluti Acid (7%)         1         X         X         X         X         X         Z         X         N         Powers           Soluti Microbis (7%)         Z         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Sodium Hydroxide (50% Cold)                              | 2      | Х      | >     | K      | 1    | 1      | -              | 1    | 2      | 2        | 2         | 2           | Х          | Х      |   | Sulfuric Acid, Fuming, Oleum                                       | X        |               |          | -              | -        | -        | -        | 1   | -    | 2           | 1      | 1            | 2           | -      |   | COUPLINGS     |
| Soluri Mytoch (PN)       2       X       V       V       X       X       V       V       X       V       POWER         Soluri Mytoch (PN)       V       X       V       V       X       X       V       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X </td <td>Sodium Hydroxide (50% Hot)</td> <td>-</td> <td>-</td> <td>-</td> <td>-</td> <td>1</td> <td>2</td> <td>-</td> <td>1</td> <td>Х</td> <td>Х</td> <td>2</td> <td>2</td> <td>Х</td> <td>Х</td> <td></td> <td>Sulfuric Acid (10%)</td> <td>1</td> <td>2</td> <td>2</td> <td>2</td> <td>1</td> <td>1</td> <td>-</td> <td>1</td> <td>Х</td> <td>-</td> <td>Х</td> <td>Х</td> <td>2</td> <td>Х</td> <td></td> <td></td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Sodium Hydroxide (50% Hot)                               | -      | -      | -     | -      | 1    | 2      | -              | 1    | Х      | Х        | 2         | 2           | Х          | Х      |   | Sulfuric Acid (10%)                                                | 1        | 2             | 2        | 2              | 1        | 1        | -        | 1   | Х    | -           | Х      | Х            | 2           | Х      |   |               |
| Solute From Lay       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Sodium Hydroxide (60%)                                   | 2      | Х<br>2 |       | X      | 1    | 2      | -              | 1    | Х      | X        | 2         | 2           | X          | X      |   | Sulfuric Acid (30%)                                                |          |               |          | -<br>V         | 1        | 1        | -        | 1   | X    | X           | X      | 2            | X           | X      |   | POWER         |
| Schur Hyspanis         Y         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         Y         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Sodium Hydroxide (70% Gold)                              | _      | -      |       | _      | -    | 2      |                | 1    |        | -        | _         | -           | -          | -      |   | Sulfuric Acid (75%)                                                |          | Ś             | (        | X              | -        | 2        | 2        | 1   | Ŷ    | X           | X      | 2            | X           | X      |   | CRIMP         |
| Soluti Hypercharle       1       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X <thx< th="">       Z       <thz< th=""></thz<></thx<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Sodium Hydroxide (80% Hot)                               | 1      | Х      | -     | -      | -    | -      | -              | 1    | -      | Х        | Х         | Х           | Х          | Х      |   | Sulfuric Acid (93%)                                                | X        | )             | (        | Х              | -        | X        | -        | 1   | Х    | 2           | Х      | 2            | Х           | Х      |   | COUPLINGS     |
| Solut Hypocherine, G:S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Sodium Hypochlorite                                      | 1      | Х      | -     | -      | -    | -      | -              | 1    | -      | Х        | Х         | Х           | Х          | -      |   | Sulfuric Acid (98%)                                                | X        |               | (        | Х              | Х        | Х        | -        | 1   | Х    | 2           | Х      | 2            | Х           | Х      |   |               |
| Soluti Pignation       X       X       X       I       I       X       X       I       I       X       X       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Sodium Hypochlorite, 5%                                  | -      | X      |       | X      | 1    | 1      | Х              | 1    | 1      | X        | X         | 2           | X          | X      |   | Sulfurous Acid                                                     | 2        | 2             | 2        | -              | -        | -        | -        | 1   | X    | Х           | X      | 2            | 2           | -      |   | LOW           |
| Solutine Margin programa         2         2         2         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1 <th1< th="">         1         1         1</th1<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Sodium Hypochionie, 20%                                  |        | -      | . /   | -      | -    |        | ~              | 1    | 2      | X        | 1         | 2           | X          | ~      |   | Sulfurous Acid (10%)<br>Sulfurous Acid (75%)                       | X        |               | (        | ×              | 1        | 1        | 2        | 1   | ×    | x           | X      | 2            | X           | X      |   | PRESSURE      |
| Sodum Netroine         X         X         v         v         X         v         V         X         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Sodium Metaphosphate                                     | 2      | 2      | 2     | 2      | 1    | 2      | -              | 1    | 1      | x        | 1         | 1           | 1          | X      |   | Sun R&O Oils                                                       |          | 1             |          | -              | -        | -        | 2        | 1   | 1    | 1           | 1      | 1            | 1           | 1      |   | COUPLINGS     |
| Solum Protocie         X         X         V         I         I         X         X         I         I         X         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Sodium Nitrate                                           | X      | Х      | -     | -      | 1    | 2      | 1              | 1    | 1      | 1        | 2         | 2           | 2          | 2      |   | Sunsafe (Fire Resist. Hydr. Fluid)                                 | 2        | 1             |          | -              | -        | -        | 2        | 1   | 1    | 1           | 1      | 1            | 1           | -      |   |               |
| Sodum Prexode Sodum Dixedu         1         2         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1 </td <td>Sodium Perborate</td> <td>  X</td> <td>Х</td> <td>-</td> <td>-</td> <td>-</td> <td>Х</td> <td>-</td> <td>1</td> <td>2</td> <td>Х</td> <td>1</td> <td>1</td> <td>1</td> <td>Х</td> <td></td> <td>Suntac HPOils</td> <td>-</td> <td>1</td> <td></td> <td>-</td> <td>-</td> <td>-</td> <td>2</td> <td>1</td> <td>1</td> <td>1</td> <td>-</td> <td>1</td> <td>1</td> <td>-</td> <td></td> <td></td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Sodium Perborate                                         | X      | Х      | -     | -      | -    | Х      | -              | 1    | 2      | Х        | 1         | 1           | 1          | Х      |   | Suntac HPOils                                                      | -        | 1             |          | -              | -        | -        | 2        | 1   | 1    | 1           | -      | 1            | 1           | -      |   |               |
| Soluti Procential Region       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1 </td <td>Sodium Peroxide (Sodium Dioxide)</td> <td></td> <td>2</td> <td>1</td> <td>1</td> <td>2</td> <td>1</td> <td>-</td> <td>1</td> <td>X</td> <td>X</td> <td>1</td> <td>1</td> <td>1</td> <td>X</td> <td></td> <td>Suntac WR Oils</td> <td>1.1</td> <td>1</td> <td></td> <td>-</td> <td>-</td> <td>-</td> <td>2</td> <td>1</td> <td>1</td> <td>1</td> <td>-</td> <td>1</td> <td>1</td> <td>-</td> <td></td> <td>POLARSEAL</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Sodium Peroxide (Sodium Dioxide)                         |        | 2      | 1     | 1      | 2    | 1      | -              | 1    | X      | X        | 1         | 1           | 1          | X      |   | Suntac WR Oils                                                     | 1.1      | 1             |          | -              | -        | -        | 2        | 1   | 1    | 1           | -      | 1            | 1           | -      |   | POLARSEAL     |
| Schum Programe (Diasci)         2         1         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1 <th1< th="">         1         1         1</th1<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Sodium Phosphate (Mono)                                  |        | 1      |       | -      | -    | 2      | -              | 1    | -      | 2        | -         | -           |            | ~      |   | Super Hydraulic Oils (Conoco)                                      |          | 1             |          | 2              | 2        | -        | 2        | 1   | 1    | 1           | 1      | 1            | - 1         | -      |   | COUPLINGS     |
| Solum Displaye (Thiase)       2       1       -       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1 <td>Sodium Phosphate (Dibasic)</td> <td>2</td> <td>1</td> <td></td> <td>-</td> <td>-</td> <td>-</td> <td>-</td> <td>1</td> <td>-</td> <td>-</td> <td>-</td> <td>-</td> <td>-</td> <td>-</td> <td></td> <td>Sutan Plus, Herbicide</td> <td>X</td> <td>)</td> <td>(</td> <td>Х</td> <td>1</td> <td>-</td> <td>-</td> <td>-</td> <td>1</td> <td>1</td> <td>1</td> <td>1</td> <td>1</td> <td>-</td> <td></td> <td></td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Sodium Phosphate (Dibasic)                               | 2      | 1      |       | -      | -    | -      | -              | 1    | -      | -        | -         | -           | -          | -      |   | Sutan Plus, Herbicide                                              | X        | )             | (        | Х              | 1        | -        | -        | -   | 1    | 1           | 1      | 1            | 1           | -      |   |               |
| Sodum       Sodum <th< td=""><td>Sodium Phosphate (Tribasic)</td><td>2</td><td>1</td><td></td><td>-</td><td>-</td><td>-</td><td>-</td><td>1</td><td>-</td><td>2</td><td>2</td><td>2</td><td>-</td><td>-</td><td></td><td>Sutazine Plus, Herbicide</td><td>X</td><td></td><td>(</td><td>-</td><td>1</td><td>-</td><td>-</td><td>-</td><td>1</td><td>Х</td><td>1</td><td>1</td><td>1</td><td>-</td><td></td><td>C14</td></th<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Sodium Phosphate (Tribasic)                              | 2      | 1      |       | -      | -    | -      | -              | 1    | -      | 2        | 2         | 2           | -          | -      |   | Sutazine Plus, Herbicide                                           | X        |               | (        | -              | 1        | -        | -        | -   | 1    | Х           | 1      | 1            | 1           | -      |   | C14           |
| Sodium Saidale (rol)       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1 <th1< th="">       1       <th1< th=""></th1<></th1<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Sodium Silicate                                          | 1      | 1      |       | -      | 1    | 1      | 2              | 1    | 1      | 1        | 1         | 1           | -          | 1      |   | Synthetic Oil (Citgo)                                              |          | -             |          | -              | -        | -        | 2        | -   | 1    | 1           | 1      | 1            | -           | -      |   | COUPLINGS     |
| Solum Surial       Image: Strate in the strate                                         | Sodium Silicate (Hot)<br>Sodium Sulfate                  |        | 1      |       | -      | - 1  | -      | -              | 1    | - 1    | 2        | 2         | 2           | X          | X<br>2 |   | Syrup                                                              | 2        | 1             |          | 2              | -        | -        | -        | 1   | 1    | -           | 1      | 1            | 1           | -      |   |               |
| Solum Sulfie, Sturied         1         1         -         -         -         1         2         2         1         N         1         1         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1 <th1< th="">         1         1         <th1< th=""></th1<></th1<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Sodium Sulfide                                           |        | 1      |       | -      | 1    | 1      | 1              | 1    | 1      | X        | X         | 2           | Х          | X      |   | T                                                                  |          |               |          | ~              |          | V        |          |     |      | ~           | v      | ~            |             |        |   | DOTO          |
| Sodium Suffie       2       2       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Soium Sulfide, Saturated                                 | 1      | 1      |       | -      | -    | -      | -              | 1    | 1      | 2        | 2         | 1           | Х          | Х      |   | Tall Oil (Under 150°F)                                             | 2        | 2             | <u>,</u> | 2              | -        | X        | -        | 1   | -    | 2           | X<br>2 | 2            | X<br>1      | - 2    |   | THERMO-       |
| Sodium Suffit, 19% (b) 10°       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1 <th1< th="">       1       1       <th1< <="" td=""><td>Sodium Sulfite</td><td>2</td><td>2</td><td>2</td><td>2</td><td>1</td><td>2</td><td>1</td><td>1</td><td>2</td><td>1</td><td>1</td><td>1</td><td>-</td><td>Х</td><td></td><td>Tannic Acid (10%)</td><td>2</td><td>&gt;</td><td>(</td><td>-</td><td>1</td><td>2</td><td>-</td><td>1</td><td>x</td><td>2</td><td>1</td><td>1</td><td>2</td><td>X</td><td></td><td>PLASTIC</td></th1<></th1<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Sodium Sulfite                                           | 2      | 2      | 2     | 2      | 1    | 2      | 1              | 1    | 2      | 1        | 1         | 1           | -          | Х      |   | Tannic Acid (10%)                                                  | 2        | >             | (        | -              | 1        | 2        | -        | 1   | x    | 2           | 1      | 1            | 2           | X      |   | PLASTIC       |
| Solution         Construction                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Sodium Sulfite, 5%                                       |        | 1      |       | -      | -    | -      | -              | 1    | -      | 1        | 1         | 1           | 1          | -      |   | Tar And Tar Oil                                                    | 2        | -             |          | -              | -        | -        | 2        | 1   | 1    | 1           | 1      | 1            | 1           | 2      |   | COUPLINGS     |
| (p+P)       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1 <td>Sodium Thiosulfate</td> <td>  '</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>2</td> <td>2</td> <td>2</td> <td>2</td> <td></td> <td></td> <td>Tar (Bituminous, Under 100°F)</td> <td>2</td> <td>2</td> <td>2</td> <td>2</td> <td>Х</td> <td>-</td> <td>-</td> <td>1</td> <td>-</td> <td>1</td> <td>1</td> <td>1</td> <td>1</td> <td>2</td> <td></td> <td></td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Sodium Thiosulfate                                       | '      |        |       |        |      |        |                |      |        | 2        | 2         | 2           | 2          |        |   | Tar (Bituminous, Under 100°F)                                      | 2        | 2             | 2        | 2              | Х        | -        | -        | 1   | -    | 1           | 1      | 1            | 1           | 2      |   |               |
| Sodum Tipolybiosphate (STPP)       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       · <th< td=""><td>(HPO, Antichior)</td><td>1</td><td>1</td><td>1</td><td>1</td><td>1</td><td>1</td><td>1</td><td>1</td><td>1</td><td>Х</td><td>1</td><td>1</td><td>2</td><td>Х</td><td></td><td>Tartaric Acid</td><td>  2</td><td>2</td><td>-</td><td>2</td><td>1</td><td>1</td><td>-</td><td>1</td><td>1</td><td>X<br/>1</td><td>2</td><td>2</td><td>2</td><td>X<br/>1</td><td></td><td></td></th<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | (HPO, Antichior)                                         | 1      | 1      | 1     | 1      | 1    | 1      | 1              | 1    | 1      | Х        | 1         | 1           | 2          | Х      |   | Tartaric Acid                                                      | 2        | 2             | -        | 2              | 1        | 1        | -        | 1   | 1    | X<br>1      | 2      | 2            | 2           | X<br>1 |   |               |
| Solus Olis       -       1       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Sodium Tripolyphosphate (STPP)                           | -      | -      |       | -      | -    | -      | -              | 1    | -      | -        | 1         | 1           | Х          | Х      |   | Tenol Oils                                                         |          | 1             |          | -              | -        | -        | 2        | 1   | 1    | 1           | 1      | 1            | -           | -      |   |               |
| Double Conduction       Particle                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Solnus Oils<br>Sour Crude Oil                            | -      | 1      |       | -      | -    | -      | 2              | 1    | 1      | 1        | 1         | 1           | 1          | 1      |   | Tergitol                                                           | -        | -             |          | -              | -        | -        | -        | 1   | -    | 2           | 1      | 1            | -           | 2      |   | G1 & G2       |
| Spent Acid       -       -       -       2       -       1       1       -       Teressite       -       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Sovbean Oil                                              | 2      | 2      | 2     | 2      | -    | 2      |                | 1    | 1      | 1        | 1         | 1           | 1          | -      |   | Terpineol                                                          | X        | 2             | 2        | -              | 1        | 2        | -        | 1   | 2    | -           | -      | -            | -           | -      |   | COUPLINGS     |
| Stanic Chloride       X       2       2       1       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       Z       Z       Z       Z       Z       Z       Z       Z       Z       Z       Z       Z       Z       Z       Z       Z       Z       Z       Z       Z       Z       Z       Z       Z       Z       Z       Z       Z       Z       Z       Z       Z       Z       Z       Z       Z       Z       Z       Z       Z       Z       Z       Z       Z       Z       Z       Z       Z       Z       Z       Z       Z       Z       Z       Z       Z       Z       Z       Z       Z       Z       Z       Z       Z       Z       Z       Z       Z <thz< th=""> <thz< th="">       Z       <thz< th=""> <t< td=""><td>Spent Acid</td><td>-  </td><td>-</td><td></td><td>-</td><td>-</td><td>2</td><td>-</td><td>1</td><td>-</td><td>-</td><td>1</td><td>1</td><td>-</td><td>-</td><td></td><td>Terresstic</td><td>-</td><td>1</td><td>)<br/>)</td><td>-</td><td>-</td><td>-</td><td>-</td><td>- 1</td><td>1</td><td>1</td><td>1</td><td>1</td><td>-</td><td>-</td><td></td><td></td></t<></thz<></thz<></thz<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Spent Acid                                               | -      | -      |       | -      | -    | 2      | -              | 1    | -      | -        | 1         | 1           | -          | -      |   | Terresstic                                                         | -        | 1             | )<br>)   | -              | -        | -        | -        | - 1 | 1    | 1           | 1      | 1            | -           | -      |   |               |
| Stannic Chloride, 50%       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Stannic Chloride                                         | X      | 2      | 2     | 2      | 1    | Х      | -              | 1    | Х      | Х        | Х         | Х           | Х          | Х      |   | Tetraethyl Lead Blend                                              | X        | 2             | 2        | 2              | 2        |          | 2        | 1   | -    | 2           | 2      | -            | -           | -      |   |               |
| Stannus Cirilide (Junde 1001)       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1 <t< td=""><td>Stannic Chloride, 50%</td><td></td><td>1</td><td></td><td>-</td><td>- 1</td><td>- 1</td><td>-</td><td>1</td><td>-<br/>V</td><td>X</td><td>X</td><td>X</td><td>X</td><td>-</td><td></td><td>Tetrahydrofuran (THF)</td><td>X</td><td></td><td>(</td><td>-</td><td>-</td><td>Х</td><td>2</td><td>1</td><td>1</td><td>2</td><td>-</td><td>-</td><td>-</td><td>-</td><td></td><td>FIELD</td></t<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Stannic Chloride, 50%                                    |        | 1      |       | -      | - 1  | - 1    | -              | 1    | -<br>V | X        | X         | X           | X          | -      |   | Tetrahydrofuran (THF)                                              | X        |               | (        | -              | -        | Х        | 2        | 1   | 1    | 2           | -      | -            | -           | -      |   | FIELD         |
| Starch       2       2       -       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1 <td>Stannous Chloride, 15%</td> <td></td> <td>1</td> <td></td> <td>_</td> <td>-</td> <td>-</td> <td></td> <td>1</td> <td>-</td> <td>x</td> <td>x</td> <td>-</td> <td>X</td> <td></td> <td></td> <td>Tetralin</td> <td>X</td> <td></td> <td>(</td> <td>-</td> <td>-</td> <td>Х</td> <td>-</td> <td>1</td> <td>2</td> <td>1</td> <td>1</td> <td>1</td> <td>1</td> <td>-</td> <td></td> <td>ATTACHABLE</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Stannous Chloride, 15%                                   |        | 1      |       | _      | -    | -      |                | 1    | -      | x        | x         | -           | X          |        |   | Tetralin                                                           | X        |               | (        | -              | -        | Х        | -        | 1   | 2    | 1           | 1      | 1            | 1           | -      |   | ATTACHABLE    |
| Steam       USE STEAM HOSE       -       2       1       1       1       -       2       1       1       1       -       2       1       1       1       -       2       1       1       1       -       2       1       1       1       -       2       1       1       1       1       -       2       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1 <th1< th="">       1       1</th1<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Starch                                                   | 2      | 2      | -     | -      | -    | 1      | 1              | 1    | 1      | Х        | 1         | 1           | 1          | -      |   | Thiopen                                                            |          |               | (        | -              | -        | -        | -        | 1   | -    | ÷           | -      | -            | -           | -      |   | COUPLINGS     |
| Stearin       2       2       2       1       1       1       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X </td <td>Steam</td> <td>ψse</td> <td>STE</td> <td>AM</td> <td>HO</td> <td>SE</td> <td>-</td> <td>2</td> <td>1</td> <td>-</td> <td>1</td> <td>1</td> <td>1</td> <td>-</td> <td>2</td> <td></td> <td>Toluene (Toluol)</td> <td></td> <td>)<br/>  }</td> <td>(</td> <td>л<br/>Х</td> <td>-<br/>X</td> <td>-<br/>X</td> <td>-</td> <td>1</td> <td>-</td> <td>1</td> <td>2</td> <td>2</td> <td>X<br/>1</td> <td>X<br/>1</td> <td></td> <td></td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Steam                                                    | ψse    | STE    | AM    | HO     | SE   | -      | 2              | 1    | -      | 1        | 1         | 1           | -          | 2      |   | Toluene (Toluol)                                                   |          | )<br>  }      | (        | л<br>Х         | -<br>X   | -<br>X   | -        | 1   | -    | 1           | 2      | 2            | X<br>1      | X<br>1 |   |               |
| Jordani       2       2       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7 </td <td>Stearic Acid</td> <td>2</td> <td>2</td> <td>2</td> <td>2</td> <td>1</td> <td>2</td> <td>1</td> <td>1</td> <td>1</td> <td>X</td> <td>2</td> <td>1</td> <td>Х</td> <td>Х</td> <td></td> <td>Toluene Diisocyanate (Under 150°</td> <td>Ϋ́Ρ, Χ</td> <td>-</td> <td></td> <td>-</td> <td>-</td> <td>-</td> <td>-</td> <td>1</td> <td>-</td> <td>1</td> <td>1</td> <td>1</td> <td>-</td> <td>-</td> <td></td> <td></td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Stearic Acid                                             | 2      | 2      | 2     | 2      | 1    | 2      | 1              | 1    | 1      | X        | 2         | 1           | Х          | Х      |   | Toluene Diisocyanate (Under 150°                                   | Ϋ́Ρ, Χ   | -             |          | -              | -        | -        | -        | 1   | -    | 1           | 1      | 1            | -           | -      |   |               |
| Styrene (Monomer)       X       X       -       -       -       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Stoddard Solvent                                         | 2      | 2      | · `   | -      | - 1  | -      | í<br>X         | 1    | 2<br>1 | 2        | - 1       | - 1         | - 1        | - 1    |   | Transformer Oil (Askarel Types)                                    | X        | $\rightarrow$ | (        | Х              | 1        | Х        | -        | 1   | -    | 1           | 1      | 1            | 1           | -      |   | SURELOK AIR   |
| Styrene (Monomer)       -       X       -       2       2       X       2       X       2       X       2       X       2       X       2       X       2       X       2       X       2       X       2       X       2       X       2       X       2       X       2       X       2       X       2       X       2       X       2       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1 <th1< th="">       1       <th1< th=""></th1<></th1<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Styrene (Vinyl Benzene)                                  | X      | X      |       | -      | -    | -      | -              | 1    | 1      | 1        | 1         | 1           | 1          | 1      |   | Transformer Oil (Petroleum Type)                                   | 2        | 1             |          | 2              | 1        | Х        | 2        | 1   | 1    | 1           | 1      | 1            | 1           | 1      |   | BRAKE         |
| Sucrose Solutions       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Styrene (Monomer)                                        | -      | Х      | -     | -      | 2    | -      | -              | 1    | 2      | 2        | Х         | 2           | Х          | 2      |   | Transmission Fluid, Type A<br>Tributoxyethyl Phosphate             | 2<br>  v | 1             | (        | Z<br>X         | т<br>Х   | 2<br>X   | 2        | 1   | 2    | 1           | 1      | 1            | 1<br>¥      | 1      |   | COUPLINGS     |
| Summin Cade (10%, Under 1/0+7)       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       1       1       1       1       1       1       <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Sucrose Solutions                                        | 1      | 1      | 1     | 1      | -    | 1      | -              | 1    | -      | 1        | 1         | 1           | -          | -      |   | Tributyl Phosphate                                                 | Î        | Ś             | (        | X              | 2        | X        | -        | 1   | -    | 1           | -      | -            | X           | -      |   |               |
| Sulfare Green Liquor       1       1       -       -       -       1       1       2       2       2       X       -       Trichloromonofluoroethane<br>(Feon 17)       Use Freen Hose       1       1       1       X       -       DISCONNECT<br>COUPLERS         Sulfur       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       1       1       1       1       1       1       1       1       1       1       1       1       1 </td <td>Sulfamic Acid (10%, Under 170°F)<br/>Sulfate Black Liquor</td> <td>  -<br/>1</td> <td>- 1</td> <td></td> <td>-</td> <td>1</td> <td>2</td> <td>-</td> <td>1</td> <td>-</td> <td>2</td> <td>-<br/>2</td> <td>-<br/>2</td> <td>-<br/>Y</td> <td>-</td> <td></td> <td>Trichloroethylene</td> <td>X</td> <td><math>\rightarrow</math></td> <td>(</td> <td>Х</td> <td>2</td> <td>Х</td> <td>-</td> <td>1</td> <td>2</td> <td>Х</td> <td>2</td> <td>1</td> <td>Х</td> <td>1</td> <td></td> <td>QUICK</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Sulfamic Acid (10%, Under 170°F)<br>Sulfate Black Liquor | -<br>1 | - 1    |       | -      | 1    | 2      | -              | 1    | -      | 2        | -<br>2    | -<br>2      | -<br>Y     | -      |   | Trichloroethylene                                                  | X        | $\rightarrow$ | (        | Х              | 2        | Х        | -        | 1   | 2    | Х           | 2      | 1            | Х           | 1      |   | QUICK         |
| Sulfur       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       - <td>Sulfate Green Liquor</td> <td></td> <td>1</td> <td></td> <td>_</td> <td>-</td> <td>_</td> <td>-</td> <td>1</td> <td>1</td> <td>2</td> <td>2</td> <td>2</td> <td>X</td> <td>-</td> <td></td> <td>Trichloromonofluoroethane</td> <td></td> <td></td> <td></td> <td></td> <td>_</td> <td></td> <td>DISCONNECT</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Sulfate Green Liquor                                     |        | 1      |       | _      | -    | _      | -              | 1    | 1      | 2        | 2         | 2           | X          | -      |   | Trichloromonofluoroethane                                          |          |               |          |                | _        |          |          |     |      |             |        |              |             |        |   | DISCONNECT    |
| Sulfur (Molten)       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Sulfur                                                   | -      | -      |       | -      | -    | -      | -              | -    | -      | -        | -         | -           | -          | -      |   | (Freon 17)                                                         |          |               | U        | Jse F          | reo      | n Ho     | se       |     | 1    | 1           | 1      | Х            | -           |        |   | COUPLERS      |
| Sulture Chlonde       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       Z       Z <thz< th=""></thz<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Sulfur (Molten)                                          | X      | Х      | -     | -      | -    | -      | -              | -    | -      | -        | -         | -           | -          | -      |   | (Freon 113)                                                        |          |               | ļ        | se Fi          | reon     | i Hos    | e        | 1   | 1    | 1           | Х      | -            |             |        |   |               |
| Law bindle blocked (hold)       Law bindle (Liquid)       Law bindle (Li                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Sulfur Chloride                                          |        | X      |       | K<br>- | 2    | 2      | -              | 1    | 2      | X        | X<br>2    | 2           | X<br>1     | X      |   | Tricresyl Phosphate                                                | X        |               | (        | Х              | 1        | Х        | -        | 1   | 1    | 1           | 2      | 2            | Х           | -      |   | NEW BALL      |
| Sulfur Dioxide (Liquid)       2       X       -       2       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1 <td>Sulfur Dioxide (Drv)</td> <td></td> <td>X</td> <td>)</td> <td>K</td> <td>-</td> <td>2</td> <td>-</td> <td>1</td> <td>X</td> <td>2</td> <td>2</td> <td>1</td> <td>1</td> <td>1</td> <td></td> <td>Triethanolamine (TEA)</td> <td>2</td> <td>2</td> <td>2</td> <td>-</td> <td>1</td> <td>2</td> <td>-</td> <td>1</td> <td>1</td> <td>1</td> <td>1</td> <td>1</td> <td>1</td> <td>1</td> <td></td> <td>VALVES</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Sulfur Dioxide (Drv)                                     |        | X      | )     | K      | -    | 2      | -              | 1    | X      | 2        | 2         | 1           | 1          | 1      |   | Triethanolamine (TEA)                                              | 2        | 2             | 2        | -              | 1        | 2        | -        | 1   | 1    | 1           | 1      | 1            | 1           | 1      |   | VALVES        |
| Sulfur Hexaflouride (Gas)       1       2       -       2       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -<                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Sulfur Dioxide (Liquid)                                  | 2      | X      |       | -      | -    | 2      | -              | 1    | -      | -        | -         | -           | -          | -      |   | Tripolyphosphate (STPP)                                            | X        | . 1           | <br>>    | -              | -        | -        | -        | 1   | -    | -           | 2      | 1            | X           | -      |   |               |
| Sulfur Trioxide (Dry)       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       You is a straight of the interval o                                                                                                                                                                                                                                                                                                                                                                                                        | Sulfur Hexaflouride (Gas)                                | 1      | 2      | -     | -      | -    | 2      | -              | 1    | Х      | -        | -         | -           | -          | -      |   | Turpentine                                                         |          | 2             | -<br>)   | 2              | - 2      | Z<br>X   | -        | 1   | 1    | X           | 1      | 1            | 1           | 2      |   |               |
| Sulfuric Acid, 3 Molar       X       X       -       -       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1 <td>Sulfur Trioxide (Dry)</td> <td>X</td> <td>X</td> <td></td> <td>K</td> <td>Х</td> <td>Х</td> <td>-</td> <td>1</td> <td>1</td> <td>2</td> <td>2</td> <td>2</td> <td>2</td> <td>Х</td> <td></td> <td>Type I Fuel (MIL-S-3136)</td> <td></td> <td>2</td> <td></td> <td></td> <td>-</td> <td></td> <td>·</td> <td></td> <td>•</td> <td></td> <td>•</td> <td>•</td> <td>'</td> <td>-</td> <td></td> <td>ACCESSORIES</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Sulfur Trioxide (Dry)                                    | X      | X      |       | K      | Х    | Х      | -              | 1    | 1      | 2        | 2         | 2           | 2          | Х      |   | Type I Fuel (MIL-S-3136)                                           |          | 2             |          |                | -        |          | ·        |     | •    |             | •      | •            | '           | -      |   | ACCESSORIES   |
| Type II Fuel (MIL-S-3136) X 2 1 - 1 1 1 1 1 - EQUIPMENT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Sulfuric Acid, 85%                                       |        | X      |       | _      | _    | _      | -              | 1    | -      | <b>^</b> | -         | -           | -          | -      |   | ASTM Fuel A                                                        | 2        | 1             |          | -              | -        | -        | -        | 1   | -    | 1           | 1      | 1            | 1           | -      |   |               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                          | 1      |        |       |        |      |        |                | -    |        | <u> </u> |           |             |            |        | • | Type II Fuel (MIL-S-3136)                                          | X        | 2             | 2        | -              | -        | -        | -        | 1   | -    | 1           | 1      | 1            | 1           | -      | _ | EQUIPMENT     |

O Cover stock rating only; Rating for tube stock "X" \*Use Gates fuel hose or contact Denver Product Applications Department.



The World's Most Trusted Name in Belts, Hose and Hydraulics.

**C60** 

EQUIPMENT



## **Hose & Coupling Section**

**Chemical Resistance Table** 

HOSE/CPLG. SELECTION

GLOBALSPIRAL COUPLINGS

PCM/PCS FERRULES

MEGACRIMP COUPLINGS

POWER CRIMP COUPLINGS

LOW PRESSURE

COUPLINGS

POLARSEAL COUPLINGS

C14 COUPLINGS

PCTS THERMO-PLASTIC COUPLINGS

FIELD ATTACHABLE G1 & G2 COUPLINGS

FIELD ATTACHABLE C5 COUPLINGS

SURELOK AIR BRAKE COUPLINGS

QUICK DISCONNECT

COUPLERS

NEW BALL VALVES

ACCESSORIES

EQUIPMENT AND PARTS

| Rating Scale:<br>1 Excellent    | Gates Hose Polymers |         |             |          |         |          |     | Couplings<br>& Adapters |             |               |               |          |          |
|---------------------------------|---------------------|---------|-------------|----------|---------|----------|-----|-------------------------|-------------|---------------|---------------|----------|----------|
| 2 Good resistance               |                     |         | Tra         | de       | Naı     | nes      |     |                         |             | 8             | 16            |          |          |
| X Not recommended               | Α                   | С       | $C_2$       | J        |         |          | Z   | 2                       | _           | el 3          | el 3          |          |          |
| - Testing recommended           | Veoprene            | Vitrile | Vitrile/PVC | CPE      | Hypalon | Jrethane | TFE | lylon                   | Carbon Stee | stainless Ste | stainless Ste | Aluminum | Brass    |
|                                 | ~                   | ~       | 2           | <u> </u> | -       | 20       | -   | ~                       | <u> </u>    | 0)            | 0)            | ~        | <u> </u> |
| ASTM Fuel B                     | х                   | 1       | -           | -        | -       | -        | 1   | -                       | 1           | 1             | 1             | 1        | -        |
| U                               |                     |         |             |          |         |          |     |                         |             |               |               |          |          |
| Ucon Hydrolube Types 150CP,     |                     |         |             |          |         |          |     |                         |             |               |               |          |          |
| 200CP                           | -                   | 1       | -           | -        | -       | 2        | 1   | 1                       | 1           | 1             | 1             | 1        | 1        |
| Ucon Hydrolube Types            |                     |         |             |          |         |          |     |                         |             |               |               |          |          |
| 275CP, 300CP, 550CP             | -                   | -       | -           | -        | -       | -        | 1   | -                       | -           | -             | -             | -        | -        |
|                                 | -                   | 1       | -           | -        | -       | 2        | 1   | 1                       |             | 1             | 1             | I        | I        |
| Union ATE Turne E               | -                   | 1       | -           | -        | -       | 2        | 1   | 1                       |             | 1             | 1             | -        | -        |
| Union ATF Type F                | -                   | 1       | -           | -        | -       | 2        | 1   | 1                       |             | 1             | 1             | I        | I        |
| Union G-2 Fluid                 | -                   | 1       | -           | -        | -       | 2        | 1   | 1                       |             | 1             | 1             | -        | -        |
| Union G-POII                    | -                   | 1       | -           | -        | -       | 2        | 1   | 1                       |             | 1             | 1             | 1        | 1        |
| Union Hydraulic Oli Aw          | -                   | 1       | -           | -        | -       | 2        | 1   | 1                       |             | 1             | 1             | 1        | 1        |
| Union Hydraulic Tractor Fluid   | -                   | 1       | -           | -        | -       | 2        | -   | 1                       |             | 1             | 1             | 1        | I        |
| Urea Solution                   |                     | 2       | -           | 1        | 1       | 2        | 1   | 1                       |             | 1             | 1             | 2        | -        |
| V                               |                     |         |             |          |         |          |     |                         |             |               |               |          |          |
| Varnish                         | Х                   | Х       | Х           | -        | Х       | -        | 1   | 1                       | 2           | 1             | 1             | 1        | 2        |
| Vegetable Oils                  | 2                   | 1       | 2           | 1        | -       | 2        | 1   | 1                       | 1           | 1             | 1             | 1        | 2        |
| Vegetable Oil (Hot)             | -                   | -       | -           | -        | -       | -        | 1   | 1                       | 2           | 2             | 2             | 1        | 2        |
| Versilube                       | 1                   | 1       | -           | -        | -       | -        | 1   | -                       | 1           | 1             | 1             | 1        | -        |
| Versilube F-50, F-44            | 2                   | 2       | 2           | -        | 2       | 2        | 1   | 1                       | 1           | 1             | 1             | 1        | 1        |
| Vinegar                         | 2                   | Х       | Х           | 2        | Х       | -        | 1   | 1                       | X           | 2             | 1             | Х        | Х        |
| Vinyl Acetate                   | Х                   | Х       | Х           | 1        | Х       | -        | 1   | -                       | 2           | 1             | 2             | 1        | 2        |
| Vinyl Chloride (Chloroethylene, |                     |         |             |          |         |          |     |                         |             |               |               |          |          |
| Monomer)                        | Х                   | Х       | Х           | Х        | Х       | -        | 1   | -                       | 2           | 1             | 1             | 2        | Х        |
| Vitrea Oils                     | Х                   | Х       | Х           | -        | -       | 2        | 1   | 1                       | 1           | 1             | 1             | -        | -        |

| Rating Scale:<br>1 Excellent                                   | G        | Gates Hose Polymers |             |     |         |                                 |         | 8     | Couplings<br>& Adapters |               |               |          |       |
|----------------------------------------------------------------|----------|---------------------|-------------|-----|---------|---------------------------------|---------|-------|-------------------------|---------------|---------------|----------|-------|
| 2 Good resistance                                              |          |                     | Tra         | de  | Naı     | nes                             |         |       |                         | 64            | 16            |          |       |
| X Not recommended                                              | Α        | С                   | $C_2$       | J   |         |                                 | Z       | Z     | _                       | el 3          | el 3          |          |       |
| <ul> <li>Testing recommended</li> <li>Chemical Name</li> </ul> | Neoprene | Nitrile             | Nitrile/PVC | CPE | Hypalon | Urethane<br>(cover rating only) | PTFE    | Nylon | Carbon Stee             | Stainless Ste | Stainless Ste | Aluminum | Brass |
|                                                                |          |                     |             |     |         |                                 |         |       |                         |               |               |          |       |
| W                                                              |          |                     |             |     |         |                                 |         |       |                         |               |               |          |       |
| Water                                                          | 1        | 1                   | 1           | 1   | 1       | 1                               | 1       | 1     | 2                       | 1             | 1             | 1        | 1     |
| Water, Acid Mine                                               | 2        | X                   | -           | -   | -       | -                               | 1       | 1     | X                       | 2             | 2             | X        | X     |
| Water Deiopized (Deminoralized)                                | 2        | 2                   | -           | -   | I       | 1                               | 1       | I     | ^                       | 2             | 2             | -        | -     |
| Water Distilled                                                | 2        | 1                   |             |     | 1       | 1                               | 1       | 1     | v                       | 1             | 1             | 1        | 1     |
| Water Fresh                                                    |          | 1                   |             |     |         |                                 | 1       | 1     | Ŷ                       | 1             | 1             | 1        | X     |
| Water In Oil Emulsions                                         |          |                     | _           | _   | _       | 2                               | 1       | 1     |                         |               |               | -        | -     |
| Water Potable (EDA Tube Only)                                  |          |                     |             | Use | FDA     | Hose                            | ,<br>On | lv -  | -                       | -             | -             | -        |       |
| Water, Salt                                                    | 2        | 1                   | -           | -   | -       | -                               | 1       | 1     | Х                       | 2             | 2             | Х        | Х     |
| White & Bagley No. 2190                                        | <u> </u> | -                   |             |     |         |                                 |         |       |                         | -             | -             |          |       |
| Cutting Oil                                                    | 2        | 1                   | -           | -   | -       | -                               | 1       | -     | -                       | -             | -             |          | -     |
| Wines                                                          | 2        | 1                   | 1           | 1   | 1       | -                               | 1       | 1     | 2                       | 2             | 2             | 1        | -     |
| Wood Oil                                                       | 2        | 1                   | -           | 1   | 2       | 1                               | 1       | 1     | 1                       | 1             | 1             | 1        | -     |
| X                                                              |          |                     |             |     |         |                                 |         |       |                         |               |               |          |       |
| Xylene                                                         | X        | Х                   | -           | Х   | -       | 2                               | 1       | Х     | 2                       | 2             | 2             | -        | -     |
| Z                                                              |          |                     |             |     |         |                                 |         |       |                         |               |               |          |       |
| Zeric                                                          | -        | 1                   | -           | -   | -       | 2                               | 1       | 2     | -                       | -             | -             | -        | -     |
| Zinc Acetate                                                   | 2        | Х                   | -           | -   | Х       | -                               | 1       | 2     | 1                       | 1             | 1             | 1        | 1     |
| Zinc Chloride Solutions                                        | 1        | 1                   | 1           | 1   | 1       | -                               | 1       | 1     | X                       | 2             | 1             | Х        | Х     |
| Zinc Chromate                                                  | -        | -                   | -           | 1   | 1       | -                               | 1       | -     | -                       | 1             | 1             | -        | -     |
| Zinc Hydrate                                                   | -        | -                   | -           | -   | -       | 2                               | 1       | -     | -                       | -             | -             | -        | -     |
| Zinc Sulfate Solutions                                         | 2        | 2                   | 2           | 1   | 2       | -                               | 1       | 2     | X                       | 2             | 1             | Х        | Х     |

OCover stock rating only; Rating for tube stock "X" \*Use Gates fuel hose or contact Denver Product Applications Department.

www.gates.com/hydraulics

Gates Corporation





Fates

The World's Most Trusted Name in Belts, Hose and Hydraulics.



EQUIPMENT

HOSE/CPLG. Selection

GLOBALSPIRAL Couplings

PCM/PCS FERRULES

MEGACRIMP COUPLINGS

POWER CRIMP COUPLINGS

LOW PRESSURE COUPLINGS

C14 Couplings

PCTS THERMO-PLASTIC COUPLINGS

POLARSEAL COUPLINGS

## **Properties of C14 PTFE Tube**

| Tensile Strength, 73°   | 1500-3000 Lb./Sq. In.                       |                              |  |
|-------------------------|---------------------------------------------|------------------------------|--|
| Elongation, 73°F (23°   | C)                                          | 100-200%                     |  |
| Stiffness, 73°F (23°C)  |                                             | 60,000 Lb/Sq. In.            |  |
| Impact Strength         | @70°F (21°C)                                | 2.0 FtLb./In.                |  |
|                         | @73°F (23°C)                                | 3.5 FtLb./In.                |  |
|                         | @170°F (77°C)                               | 6.0 FtLb./In.                |  |
| Hardness, Durometer     |                                             | D55-D70 Shore D              |  |
| Compressive Stress a    | at                                          |                              |  |
| 1% Deformation          | @73°F (23°C)                                | 600 Lb./Sq.In.               |  |
| 1% Offset               | @73°F (23°C)                                | 1000 Lb./Sq.In.              |  |
| Deformation Under Lo    | oad, 24 Hrs. @ 122°F (50°C)                 |                              |  |
| 1200 Lb./Sq.In.         |                                             | 4-8%                         |  |
| 2000 Lb./Sq.In.         |                                             | 25%                          |  |
| Heat-Distortion Temp    | erature @66 Lb./Sq. In.                     | 250°F (121°C)                |  |
| Coefficient of Linear 7 | hermal Expansion per °F; 77-140°F (25-60°C) | 5.5 x 10⁻⁵                   |  |
| Thermal Conductivity    | 0.18 ln.                                    | 1.7 B.T.U./Hr./Sq.Ft./°F/In. |  |
| Specific Heat           |                                             | 0.25 B.T.U./Lb./°F           |  |
| Water Absorption        |                                             | 0.0%                         |  |
| Flammability            |                                             | Nonflammable                 |  |
| Specific Gravity        |                                             | 2.1-2.3                      |  |
|                         |                                             |                              |  |

FIELD Attachable G1 & G2 Couplings

FIELD ATTACHABLE C5 COUPLINGS

SURELOK AIR Brake Couplings

QUICK DISCONNECT COUPLERS

NEW BALL Valves

ACCESSORIES

EQUIPMENT AND PARTS

www.gates.com/hydraulics

Gates Corporation



## **Electrostatic Discharge**

Most applications of PTFE hose do not require the use of a conductive inner tube. Under certain applications, the potential for Static Discharge must be considered. Be aware that static electricity can be a hazard. Under those conditions where static discharge can occur, the use of conductive Gates C14CT hose is recommended. The following should serve to increase your knowledge and understanding of this phenomenon and how to avoid its occurrence:

When two different materials contact each other, electrons from one material can move across its boundary and associate with the other. These electrons align themselves with the material contacted. If the two materials are good conductors of electricity, the positive and negative electrons flow back and forth between them, keeping them in balance. If one or both are insulators, the flow will not occur. A charge will then build up on the surface of one of the materials. When the charge exceeds the electric strength of the material, electric breakdown results.

In applying this to PTFE hose, we have to consider fluids and gases that are poor conductors of electricity and the flow rates of those fluids and gases. In order for a liquid or gas to be a poor electrical conductor, it will generally satisfy one or both of the following conditions:

- 1. Be nonpolar; that is, an imbalance between protons and electrons, and/or
- 2. Contain a nonmixable component or a suspended solid; such as water in kerosene.

So when a liquid contacts a PTFE tube that isn't a good conductor (white PTFE innercore), the result is phase separation and the electric charge starts to build. The rate at which static electricity builds up now becomes a function of the fluid flow rate. When the electric strength of the PTFE tube is exceeded, the electric charge will **puncture the tube wall and ground itself on the stainless steel braid of the hose.** 

In hydraulics, high pressures generally mean high velocities. Historically, fluids were filtered upstream of the hoses using metallic filter elements. The metallic element helped to ground the charge. But, today, most filtration is done with paper-type and glass-fiber filter elements that have a tendency to inject an electrostatic charge into the fluid they are filtering.

Steam and fuels are two specific areas of concern. No hoses in this catalog can or should be used in steam applications. Contact Gates Product Application for proper hose recommendation. Fuels (i.e., gasoline and white spirits, hydrazine, benzene, diesel oils, etc.) are, for the most part, "nonconductive" liquids and have a resistance greater than 108 ohm. These fluids usually are transferred at fairly low velocities, but there still is a potential for an electrostatic discharge due to external factors, such as humidity and, to some extent, temperature. You should take all of these factors into account even at fluid velocities at or below 1 meter per second.

When using PTFE hose, you can offset the potential hazard of electrostatic discharge by using a conductive Gates C14CT hose. Carbon is added to the PTFE inner tube wall during manufacture. The carbon layer directs the electrostatic charge down the inner diameter of the hose to the metal end fittings. This prevents the charge from building up on the inner tube wall.

So, it's important to examine any application where nonconductive fluids are used and any of the above conditions exist. This section is not meant to cover all conditions or situations when they involve fuels, steam or other media which may cause electrostatic buildup or potential discharge. If you need help on any individual application, contact Hose/Connector Product Application, Denver.

Following is a list of some of the chemicals that meet at least one of the criteria necessary to create electrostatic discharge:

Lacquer Solvents

Naphtha

• Octane

• Pinene

• Steam

• Toluene

• Varnish

• Versilube

• Turpentine

• Petroleum

Silicone Oils

• Skydrol 500 & 700

Transformer Oil

Paint

Naphthalene

- Cyclohexane
- Decalin
- Diacetone
- Dibutyl Ether
- Dibutyl Phthalate
- Dibutyl Sebacate
- Dimethyl Phthalate
- Dioctyl Phthalate
- Dipentene
- Fuel Oil
- Gasoline
- Hexane
- Hexene
- Hydrazine
- Kerosene
- Lacquers

General Industry Practice has identified the above fluids as requiring a conductive hose—Gates C14CT.

| HOSE/CPLG.<br>Selection                     |
|---------------------------------------------|
| GLOBALSPIRAL<br>Couplings                   |
| PCM/PCS<br>Ferrules                         |
| MEGACRIMP<br>Couplings                      |
| POWER<br>CRIMP<br>COUPLINGS                 |
| LOW<br>PRESSURE<br>COUPLINGS                |
| POLARSEAL<br>Couplings                      |
| C14<br>Couplings                            |
| PCTS<br>THERMO-<br>PLASTIC<br>COUPLINGS     |
| FIELD<br>ATTACHABLE<br>G1 & G2<br>COUPLINGS |
| FIELD<br>ATTACHABLE<br>C5<br>COUPLINGS      |
| SURELOK AIR<br>Brake<br>Couplings           |
| QUICK<br>Disconnect<br>Couplers             |
| NEW BALL<br>VALVES                          |
| ACCESSORIES                                 |
| FOLIIPMENT                                  |

EQUIPMENT

Fates

**C64** 

AND PARTS



EQUIPMENT

#### HOSE/CPLG. Selection

GLOBALSPIRAL Couplings

PCM/PCS FERRULES

MEGACRIMP Couplings

POWER CRIMP COUPLINGS

low Pressure Couplings

POLARSEAL Couplings

C14 Couplings

PCTS THERMO-PLASTIC COUPLINGS

FIELD ATTACHABLE G1 & G2 COUPLINGS

FIELD Attachable C5 Couplings

SURELOK AIR Brake Couplings

QUICK Disconnect Couplers

NEW BALL VALVES

ACCESSORIES

EQUIPMENT AND PARTS

**C65** 

Effusion/Corrosion for PTFE Hose and Hose Assemblies

### What is Effusion?

It is the process where chemical molecules move through the PTFE wall and escape from a hose or hose assembly. It is sometimes called permeation. The rate at which effusion occurs depends upon temperature, pressure, wall thickness and the hose material.

The fact that effusion occurs isn't the problem. This process will happen with most all media in most hose material.

The basic issues are:

- 1. At what rate will effusion occur?
- 2. How hazardous are the media?
- 3. In what kind of environment does effusion take place; closed room, outside, etc.?

#### General media concerns regarding the potential effects of effusion:

Media where corrosion is not of concern, but effusion may displace the air we breathe, thus becoming a hazard to personnel.

Some of the chemicals in this category are:

- Carbon Dioxide
- Nitrogen
- Steam

Neon

Argon

Xenon

Krypton

- OxygenHelium
- Media that can effuse in their "vapor phase"; i.e., their boiling point is below approximately +52°C (+125°F) at atmospheric pressure. These media can form chemicals that can corrode the braid and/or cause injury to personnel.

Some of these include:

- Acetaldehyde (Flammable, toxic)
- Benzene (Flammable, toxic)
- Liquid Butane (Flammable)
- Carbon Disulfide (Flammable, toxic)
- Diethyl Ether (Flammable, narcotic)
- Ethyl Mercaptan (Flammable, toxic)
- Hydrochloric Acid (Corrosive, toxic)

- Lacquer Solvents (Flammable)
- Methyl Bromide (Flammable, toxic, corrosive)
- Methylene Chloride (Toxic)
- Methyl Formate (Flammable, toxic)
- Liquid Propane (Flammable)
- Sulphur Trioxide (Corrosive, toxic)
- Liquid Chlorine (Corrosive, toxic)
- Media with the potential to effuse and cause corrosion of the braid reinforcement and fitting materials. These chemicals are all gases while at atmospheric pressure and a temperature of +13°C (+56°F) or lower.

Some of these chemicals are:

- Acetylene (Flammable)
- Butadiene (Flammable)
- Butane Gas (Flammable)
- Carbon Monoxide (Toxic, flammable)
- Chlorine (Toxic, corrosive)
- Chlorine Trifluoride (Toxic, corrosive)
- Ethyl Chloride (Toxic, corrosive)
- Hydrogen (Flammable)
- Hydrogen Chloride (Corrosive, toxic)
- Hydrogen Sulfide (Flammable, toxic)
- Hydrocyanic Acid (Flammable, toxic)
- Hydrogen Cyanide (Flammable, toxic)
- Coke Oven Gas (Flammable, toxic)
- Natural Gas (Flammable, toxic)
- Propane Gas (Flammable)
- Sulfur Dioxide (Corrosive)
- Vinyl Chloride Monomer (Toxic, corrosive)

It is important that hose assemblies used in these applications are installed in well-vented areas to avoid potential problems for personnel and/or equipment.







## Hydraulic System Pressure Drop

#### What is Pressure Drop?

As related to our business, pressure drop is the difference between the pressure of a fluid as it enters one end of a hydraulic hose assembly and the pressure of that fluid as it leaves the other end. There will be a difference in pressure, and it will be less. How much less depends on what is between the beginning and end of the hose assembly. Here are some examples of things that can influence the amount of pressure drop.

- 1. FRICTION This is the rubbing of fluid against the inside walls of the hose assembly.
- 2. TYPE OF FLUID Different fluids behave differently under pressure. Thicker fluids are moved with greater difficulty and will exhibit greater pressure drop.
- 3. TEMPERATURE OF THE FLUID Warming fluid thins it so it flows more easily, as with automotive oil.
- LENGTH OF HOSE ASSEMBLY The longer it is, the more surface there is for friction to decrease pressure.
- SIZE (I.D.) OF HOSE Affects the fluid velocity for a given flow rate. Higher velocities result in greater pressure drop. Therefore, a larger I.D. hose will produce less pressure drop.
- TYPE OF COUPLINGS & ADAPTERS Any change in bore or change in direction (such as with 45° or 90° elbows) can increase the amount of pressure drop.
- 7. FLOW RATE Pressure drop increases with flow rate for same size hose.

#### Who Cares About Pressure Drop?

Suppose you need 4,000 psi of output from a hose assembly for hydraulic equipment to run efficiently. There will be some pressure drop and you must allow for it in helping to plumb the system with Gates hose, couplings and adapters. This means that the input pressure to the hose assembly must be equal to the output plus the amount of pressure drop. If the pressure drop in this example is 150 psi, then you will need 4,150 psi of input.

## How Can You Determine the Amount of Pressure Drop?

That's the easy part of it. Contact your local Gates representative who is trained and equipped to quickly solve such problems for you. He will need input variables and fittings used from you as shown (see below). A Gates Pressure Drop analysis printed below will then be provided for your application.

| Sample | Pressure | Drop | Analysis |
|--------|----------|------|----------|
|--------|----------|------|----------|

Input Variables:

### Fittings Used:

Flow Rate: 15 (GPM)

- 1. Standard Straight Fitting
- 2. 90-Degree Angle Coupling

Specific Gravity: 0.85 Free Hose Length: 20.0 (ft)

Viscosity: 20.0 (Centistokes)

| Dash<br>Size<br>(1/16") | Velocity<br>(Ft/Sec) | Hose<br>Pressure<br>Drop<br>(psi/Ft) | Total<br>Pressure<br>Drop-Hose<br>& Fittings<br>(psi) | (1)<br>Reynolds<br>Number | (2)<br>Heat<br>Gain<br>(BTUH) | (3)<br>Horse-<br>power<br>Loss |
|-------------------------|----------------------|--------------------------------------|-------------------------------------------------------|---------------------------|-------------------------------|--------------------------------|
| 5                       | 62.8                 | 28.8                                 | 789.6                                                 | 7584                      | 17483                         | 6.87                           |
| 6                       | 43.6                 | 12.2                                 | 399.1                                                 | 6320                      | 8838                          | 3.47                           |
| 8                       | 24.5                 | 3.2                                  | 81.3                                                  | 4740                      | 1801                          | 0.71                           |
| *10                     | 15.7                 | 1.1                                  | 31.2                                                  | 3792                      | 691                           | 0.27                           |
| 12                      | 10.9                 | 0.5                                  | 12.7                                                  | 3160                      | 280                           | 0.11                           |
| 16                      | 6.1                  | 0.1                                  | 2.6                                                   | 2730                      | 58                            | 0.02                           |
| 20                      | 3.9                  | 0.0                                  | 0.8                                                   | 1896                      | 18                            | 0.01                           |

\*Recommended hose size, based on velocity, pressure drop, heat gain and hp loss.

(1) **Reynolds Number** =  $\frac{\text{inertia flow forces}}{\text{friction forces (or viscosity)}}$ indicates the type of flow.

| Reynolds No. Range | Type of Flow |
|--------------------|--------------|
| 0–2000             | Laminar      |
| 2000-3000          | Transient    |
| 3000 +             | Turbulent    |

- (2) Heat Gain is the total amount of energy converted to heat energy that will raise the fluid temperature if it is not dissipated.
- (3) Horsepower Loss is a measure of the conversion of mechanical energy to heat energy and is related to system heat gain.







EQUIPMENT

#### HOSE/CPLG. SELECTION

GLOBALSPIRAL

COUPLINGS

PCM/PCS

**C67** 

## **Pressure Drop Data Form**

Fill in all the following BEFORE contacting your local Gates representative for assistance in solving pressure drop problems or contacting Gates Product Application. You can now conveniently calculate your ownpressure drops by visiting www.gates.com/pressuredrop.

| FERRULES                   | Your Name:                                                |                                      |  |  |  |  |  |  |
|----------------------------|-----------------------------------------------------------|--------------------------------------|--|--|--|--|--|--|
| MEGACRIMP<br>Couplings     | Date://                                                   |                                      |  |  |  |  |  |  |
| POWER                      | Customer'sName:                                           | Location:                            |  |  |  |  |  |  |
| CRIMP<br>Couplings         | Type of Application:                                      |                                      |  |  |  |  |  |  |
| LOW                        | I. FLUID DATA NEEDED:                                     |                                      |  |  |  |  |  |  |
| PRESSURE<br>Couplings      | A. Viscosity (thickness) in:                              |                                      |  |  |  |  |  |  |
| POLARSEAL                  | 1. Centistokes (mm <sup>2</sup> /sec.)                    |                                      |  |  |  |  |  |  |
| COUPLINGS                  | or                                                        | or                                   |  |  |  |  |  |  |
| C14<br>Couplings           | 2. Saybolt Seconds Universal (SSU)                        |                                      |  |  |  |  |  |  |
|                            | or                                                        | or                                   |  |  |  |  |  |  |
| PCTS<br>THERMO-<br>PLASTIC | 3. Ft. <sup>2</sup> /sec.                                 |                                      |  |  |  |  |  |  |
| COUPLINGS                  | B. Specific Gravity                                       |                                      |  |  |  |  |  |  |
| Field<br>Attachable        | C. Or, if you cannot determine A & B above, then give:    |                                      |  |  |  |  |  |  |
| G1 & G2<br>Couplings       | 1. Fluid brand name and type                              |                                      |  |  |  |  |  |  |
| FIELD                      | 2. Fluid temperature                                      |                                      |  |  |  |  |  |  |
| ATTACHABLE<br>C5           | D. Flow rate (GPM)                                        |                                      |  |  |  |  |  |  |
| COUPLINGS                  | II. HOSE DATA NEEDED:                                     |                                      |  |  |  |  |  |  |
| SURELOK AIR<br>BRAKE       | A. Size (I.D.) in inches or dash size                     |                                      |  |  |  |  |  |  |
| COUPLINGS                  | B. Length of assembly in feet                             |                                      |  |  |  |  |  |  |
| QUICK<br>DISCONNECT        | III. COUPLING and ADAPTER DATA NEEDED:                    |                                      |  |  |  |  |  |  |
| COUPLERS                   | List quantity and catalog description of each coupling an | d adapter used in the hose assembly. |  |  |  |  |  |  |
| NEW BALL<br>Valves         |                                                           |                                      |  |  |  |  |  |  |
| ACCESSORIES                |                                                           |                                      |  |  |  |  |  |  |
| FOILIDMENT                 |                                                           |                                      |  |  |  |  |  |  |
| AND PARTS                  |                                                           |                                      |  |  |  |  |  |  |



**PSI to Metric** 

(1 psi = 6.89 kPa)

EQUIPMENT

HOSE/CPLG. Selection

GLOBALSPIRAL

COUPLINGS

## **Pressure Conversions**

### Metric to PSI

| (1  KPa = .145  ps) |
|---------------------|
|---------------------|

| Kilo Pascals<br>(kPa) | Mega Pascals<br>(MPa) | Bar<br>(Bar) | Pounds per<br>Square Inch<br>(psi) | Pounds per<br>Square Inch<br>(psi) | Kilo Pascals<br>(kPa) | Mega Pascals<br>(MPa) | Bar<br>(Bar) |
|-----------------------|-----------------------|--------------|------------------------------------|------------------------------------|-----------------------|-----------------------|--------------|
| 100                   | 0.1                   | 1            | 14.5                               | 10                                 | 68.9                  | 0.07                  | 0.7          |
| 200                   | 0.2                   | 2            | 29.0                               | 20                                 | 137.9                 | 0.14                  | 1.4          |
| 300                   | 0.3                   | 3            | 43.5                               | 30                                 | 206.8                 | 0.21                  | 2.1          |
| 400                   | 0.4                   | 4            | 58.0                               | 40                                 | 275.8                 | 0.28                  | 2.8          |
| 500                   | 0.5                   | 5            | 72.5                               | 50                                 | 344.7                 | 0.34                  | 3.4          |
| 600                   | 0.6                   | 6            | 87.0                               | 60                                 | 413.7                 | 0.41                  | 4.1          |
| 700                   | 0.7                   | 7            | 101.5                              | 70                                 | 482.6                 | 0.48                  | 4.8          |
| 800                   | 0.8                   | 8            | 116.0                              | 80                                 | 551.6                 | 0.55                  | 5.5          |
| 900                   | 0.9                   | 9            | 130.5                              | 90                                 | 620.5                 | 0.62                  | 6.2          |
| 1,000                 | 1.0                   | 10           | 145.0                              | 100                                | 689                   | 0.7                   | 6.9          |
| 2,000                 | 2.0                   | 20           | 290.1                              | 200                                | 1,379                 | 1.4                   | 13.8         |
| 3,000                 | 3.0                   | 30           | 435.1                              | 300                                | 2,068                 | 2.1                   | 20.7         |
| 4,000                 | 4.0                   | 40           | 580.2                              | 400                                | 2,758                 | 2.8                   | 27.6         |
| 5,000                 | 5.0                   | 50           | 725.2                              | 500                                | 3,447                 | 3.4                   | 34.5         |
| 6,000                 | 6.0                   | 60           | 870.2                              | 600                                | 4,137                 | 4.1                   | 41.4         |
| 7,000                 | 7.0                   | 70           | 1,015.3                            | 700                                | 4,826                 | 4.8                   | 48.3         |
| 8,000                 | 8.0                   | 80           | 1,160.3                            | 800                                | 5,516                 | 5.5                   | 55.2         |
| 9,000                 | 9.0                   | 90           | 1,305.3                            | 900                                | 6,205                 | 6.2                   | 62.1         |
| 10,000                | 10                    | 100          | 1,450                              | 1,000                              | 6,895                 | 6.9                   | 68.9         |
| 20,000                | 20                    | 200          | 2,901                              | 2,000                              | 13,790                | 13.8                  | 137.9        |
| 30,000                | 30                    | 300          | 4,351                              | 3,000                              | 20,684                | 20.7                  | 206.8        |
| 40,000                | 40                    | 400          | 5,802                              | 4,000                              | 27,579                | 27.6                  | 275.8        |
| 50,000                | 50                    | 500          | 7,252                              | 5,000                              | 34,474                | 34.5                  | 344.7        |
| 60,000                | 60                    | 600          | 8,702                              | 6,000                              | 41,369                | 41.4                  | 413.7        |
| 70,000                | 70                    | 700          | 10,153                             | 7,000                              | 48,263                | 48.3                  | 482.6        |
| 80,000                | 80                    | 800          | 11,603                             | 8,000                              | 55,158                | 55.2                  | 551.6        |
| 90,000                | 90                    | 900          | 13,053                             | 9,000                              | 62,053                | 62.1                  | 620.5        |
| 100,000               | 100                   | 1000         | 14,504                             | 10,000                             | 68,948                | 68.9                  | 689          |
| 200,000               | 200                   | 2000         | 29,008                             | 20,000                             | 137,895               | 137.9                 | 1,379        |
| 300,000               | 300                   | 3000         | 43,511                             | 30,000                             | 206,843               | 206.8                 | 2,068        |
|                       |                       |              |                                    | 40.000                             | 275 790               | 275.8                 | 2 758        |

#### Examples

| (A) | Conve | ert 3,429 psi | to the | e equivale | ent pressure in Bar. |
|-----|-------|---------------|--------|------------|----------------------|
|     |       | 3,000 psi     | =      | 206.8      | Bar                  |
|     | +     | 400 psi       | =      | 27.6       | Bar                  |
|     | +     | 20 psi        | =      | 1.4        | Bar                  |
|     | +     | 9 psi         | =      | .62        | Bar                  |
|     |       | 3429 psi      | =      | 236.42     | Bar                  |

| (B) Convert 3,429 psi to the equivalent pressure in MPa. |           |   |        |     |  |  |  |  |  |
|----------------------------------------------------------|-----------|---|--------|-----|--|--|--|--|--|
|                                                          | 3,000 psi | = | 20.680 | MPa |  |  |  |  |  |
| +                                                        | 400 psi   | = | 2.760  | MPa |  |  |  |  |  |
| +                                                        | 20 psi    | = | .140   | MPa |  |  |  |  |  |
| +                                                        | 9 psi     | = | .062   | MPa |  |  |  |  |  |
|                                                          | 3,429 psi | = | 23.642 | MPa |  |  |  |  |  |

| PCM/PCS<br>Ferrules                         |
|---------------------------------------------|
| MEGACRIMP<br>Couplings                      |
| Power<br>Crimp<br>Couplings                 |
| LOW<br>PRESSURE<br>COUPLINGS                |
| POLARSEAL<br>Couplings                      |
| C14<br>Couplings                            |
| PCTS<br>THERMO-<br>PLASTIC<br>COUPLINGS     |
| FIELD<br>ATTACHABLE<br>G1 & G2<br>Couplings |
| FIELD<br>ATTACHABLE<br>C5<br>COUPLINGS      |
| SURELOK AIR<br>Brake<br>Couplings           |
| QUICK<br>DISCONNECT<br>COUPLERS             |
| NEW BALL<br>VALVES                          |
| ACCESSORIES                                 |
| EQUIPMENT                                   |

AND PARTS



EQUIPMENT

HOSE/CPLG. SELECTION

### **Steam Conditions**

The chart below shows steam conditions. The heavy black line is the boiling point of water at various gauge pressures. Any point on the line represents saturated steam. Any point below the line represents Hot Water and any point above the line represents Superheated Steam.

Caution: 198°C (388°F) at 200 psi is the maximum recommended steam condition for Gates C14 hose.

Caution: Considering the potential for electrostatic discharge, Gates C14CT "conductive" hose is recommended.

196 (388)177 (350)Superheated Steam femperature, °C (°F) 149 (300)Hot Water 121 (250)98 (200) 0 50 100 150 200 Gauge Pressure, psi

## **Fahrenheit-Celsius Conversion**





PCM/PCS FERRULES

COUPLINGS

MEGACRIMP COUPLINGS

POWER CRIMP COUPLINGS

LOW PRESSURE COUPLINGS

POLARSEAL COUPLINGS

C14 COUPLINGS

PCTS THERMO-PLASTIC COUPLINGS

FIELD ATTACHABLE G1 & G2 COUPLINGS

FIELD ATTACHABLE C5 COUPLINGS

SURELOK AIR BRAKE COUPLINGS

QUICK DISCONNECT COUPLERS

NEW BALL VALVES

ACCESSORIES

EQUIPMENT AND PARTS

www.gates.com/hydraulics





## **Fahrenheit-Celsius Conversion**

Look up a temperature reading in the middle column (shaded). If it's in degrees Centigrade, read the Fahrenheit equivalent in the right-hand column. If it's in degrees Fahrenheit, read the Centigrade equivalent In the left-hand column.

| C     | F\C | F     |
|-------|-----|-------|
| -68   | -90 | -130  |
| -62   | -80 | -112  |
| -57   | -70 | -94   |
| -51   | -60 | -76   |
| -46   | -50 | -58   |
| -40   | -40 | -40   |
| -34   | -30 | -22   |
| -29   | -20 | -4    |
| -23   | -10 | 14    |
| -17.8 | 0   | 32    |
| -17.2 | 1   | 33.8  |
| -16.7 | 2   | 35.6  |
| -16.1 | 3   | 37.4  |
| -15.6 | 4   | 39.2  |
| -15.0 | 5   | 41.0  |
| -14.4 | 6   | 42.8  |
| -13.9 | 7   | 44.6  |
| -13.3 | 8   | 46.4  |
| -12.8 | 9   | 48.2  |
| -12.2 | 10  | 50.0  |
| -11 7 | 11  | 51.8  |
| -11.1 | 12  | 53.6  |
| -10.6 | 13  | 55.4  |
| -10.0 | 14  | 57.2  |
| -9.4  | 15  | 59.0  |
| -8.9  | 16  | 60.8  |
| -8.3  | 17  | 62.6  |
| -7.8  | 18  | 64.4  |
| -7.2  | 19  | 66.2  |
| -6.7  | 20  | 68.0  |
| -6.1  | 21  | 69.8  |
| -5.6  | 22  | 71.6  |
| -5.0  | 23  | 73.4  |
| -4.4  | 24  | 75.2  |
| -3.9  | 25  | 77.0  |
| -3.3  | 26  | 78.8  |
| -2.8  | 27  | 80.6  |
| -2.2  | 28  | 82.4  |
| -1.7  | 29  | 84.2  |
| -1.1  | 30  | 86.0  |
| 6     | 31  | 87.8  |
| 0     | 32  | 89.6  |
| .6    | 33  | 91.4  |
| 1.1   | 34  | 93.2  |
| 1.7   | 35  | 95.0  |
| 2.2   | 36  | 96.8  |
| 2.8   | 37  | 98.6  |
| 3.3   | 38  | 100.4 |
| 3.9   | 39  | 102.2 |
| 4.4   | 40  | 104.0 |

| C    | E/C | E     |
|------|-----|-------|
| 5.0  | /1  | 105.8 |
| 5.6  | 41  | 107.6 |
| 6.1  | 42  | 107.0 |
| 0.1  | 43  | 109.4 |
| 0./  | 44  | 112.0 |
| 7.2  | 45  | 113.0 |
| 7.8  | 40  | 114.8 |
| 8.3  | 47  | 116.6 |
| 8.9  | 48  | 118.4 |
| 9.4  | 49  | 120.2 |
| 10.0 | 50  | 122.0 |
| 10.6 | 51  | 123.8 |
| 11.1 | 52  | 125.6 |
| 11.7 | 53  | 127.4 |
| 12.2 | 54  | 129.2 |
| 12.8 | 55  | 131.0 |
| 13.3 | 56  | 132.8 |
| 13.9 | 57  | 134.6 |
| 14.4 | 58  | 136.4 |
| 15.0 | 59  | 138.2 |
| 15.6 | 60  | 140.0 |
| 16.1 | 61  | 141.8 |
| 16.7 | 62  | 143.6 |
| 17.2 | 63  | 145.4 |
| 17.8 | 64  | 147.2 |
| 18.3 | 65  | 149.0 |
| 18.9 | 66  | 150.8 |
| 19.4 | 67  | 152.6 |
| 20.0 | 68  | 154.4 |
| 20.6 | 69  | 156.2 |
| 21.1 | 70  | 158.0 |
| 21.7 | 71  | 159.8 |
| 22.2 | 72  | 161.6 |
| 22.8 | 73  | 163.4 |
| 23.3 | 74  | 165.2 |
| 23.9 | 75  | 167.0 |
| 24.4 | 76  | 168.8 |
| 25.0 | 77  | 170.6 |
| 25.6 | 78  | 172.4 |
| 26.1 | 79  | 174.2 |
| 26.7 | 80  | 176.0 |
| 27.2 | 81  | 177.8 |
| 27.8 | 82  | 179.6 |
| 28.3 | 83  | 181.6 |
| 28.9 | 84  | 183.2 |
| 29.4 | 85  | 185.0 |
| 30.0 | 86  | 186.8 |
| 30.6 | 87  | 188.6 |
| 31.1 | 88  | 190.0 |
| 31.7 | 80  | 102.4 |
| 31.1 | 09  | 10/ 0 |
| 32.2 | 01  | 105.0 |
| JZ.0 | 31  | 190.0 |

| C    | F\C | F     |
|------|-----|-------|
| 33.3 | 92  | 197.6 |
| 33.0 | 93  | 107.0 |
| 34.4 | 94  | 201.2 |
| 25.0 | 05  | 201.2 |
| 25.6 | 95  | 203.0 |
| 26.1 | 90  | 204.0 |
| 26.7 | 97  | 200.0 |
| 30.7 | 98  | 206.4 |
| 37.2 | 99  | 210.2 |
| 37.8 | 100 | 212.0 |
| 43   | 110 | 230   |
| 49   | 120 | 248   |
| 54   | 130 | 266   |
| 60   | 140 | 284   |
| 66   | 150 | 302   |
| 71   | 160 | 320   |
| 77   | 170 | 338   |
| 82   | 180 | 356   |
| 88   | 190 | 374   |
| 93   | 200 | 392   |
| 99   | 210 | 410   |
| 100  | 212 | 413.6 |
| 104  | 220 | 428   |
| 110  | 230 | 446   |
| 116  | 240 | 464   |
| 121  | 250 | 482   |
| 127  | 260 | 500   |
| 132  | 270 | 518   |
| 138  | 280 | 536   |
| 143  | 290 | 554   |
| 149  | 300 | 572   |
| 154  | 310 | 590   |
| 160  | 320 | 608   |
| 166  | 330 | 626   |
| 170  | 338 | 640   |
| 171  | 340 | 644   |
| 177  | 350 | 662   |
| 182  | 360 | 680   |
| 186  | 366 | 691   |
| 188  | 370 | 698   |
| 193  | 380 | 716   |
| 198  | 388 | 730   |
| 199  | 390 | 734   |
| 204  | 400 | 752   |
| 208  | 406 | 763   |
| 210  | 410 | 770   |
| 216  | 420 | 788   |
| 210  | 420 | 808   |
| 221  | 430 | 824   |
| 221  | 440 | 024   |
| 232  | 400 | 042   |

| SEL                      | ECTION                            |     |  |
|--------------------------|-----------------------------------|-----|--|
| GLO<br>COU               | Balspiral<br>Iplings              | -   |  |
| PCN<br>FER               | M/PCS<br>RULES                    |     |  |
| ME<br>COL                | gacrimp<br>Jplings                |     |  |
| POV<br>CRI<br>COL        | ver<br>Mp<br>Jplings              |     |  |
| LOV<br>PRE<br>COL        | V<br>Essure<br>Jplings            |     |  |
| POL<br>COL               | .arseal<br>Jplings                |     |  |
| C14<br>COL               | i<br>Jplings                      |     |  |
| PCT<br>The<br>Pla<br>Col | TS<br>ERMO-<br>Astic<br>Jplings   |     |  |
| FIEI<br>Att<br>G1<br>COL | ld<br>Tachable<br>& G2<br>Jplings | Ē   |  |
| FIEI<br>ATT<br>C5<br>C0L | ld<br>'Achable<br>Jplings         | 1   |  |
| SUF<br>BR/<br>COL        | RELOK AIF<br>Ake<br>Jplings       | 1   |  |
| QUI<br>DIS<br>COL        | ck<br>Connect<br>Jplers           | ſ   |  |
| NEV<br>VAL               | N BALL<br>.Ves                    |     |  |
| ٨٢٢                      | ressorie                          | ic. |  |



**C70** 

EQUIPMENT AND PARTS

EQUIPMENT

HOSE/CPLG. Selection

GLOBALSPIRAL Couplings

PCM/PCS Ferrules

MEGACRIMP COUPLINGS

> Power Crimp Couplings

LOW PRESSURE COUPLINGS

POLARSEAL

COUPLINGS

C14 COUPLINGS

PCTS THERMO-PLASTIC COUPLINGS

FIELD Attachable G1 & G2 Couplings

FIELD ATTACHABLE C5

COUPLINGS SURELOK AIR

Brake Couplings

QUICK Disconnect

COUPLERS

NEW BALL VALVES

ACCESSORIES

EQUIPMENT AND PARTS



| Inches    |          |             | Inches    |          |             | Inches    |          |             |
|-----------|----------|-------------|-----------|----------|-------------|-----------|----------|-------------|
| Fractions | Decimals | Millimeters | Fractions | Decimals | Millimeters | Fractions | Decimals | Millimeters |
| 1/64      | .015625  | .397        | 23/64     | .359375  | 9.128       | 11/16     | .6875    | 17.463      |
| 1/32      | .03125   | .794        | 3/8       | .375     | 9.525       | 45/64     | .703125  | 17.859      |
| 3/64      | .046875  | 1.191       | 25/64     | .390625  | 9.922       | 23/32     | .71875   | 18.256      |
| 1/16      | .0625    | 1.588       | 13/32     | .40625   | 10.319      | 47/64     | .734375  | 18.653      |
| 5/64      | .078125  | 1.984       | 27/64     | .421875  | 10.716      | 3/4       | .750     | 19.050      |
| 3/32      | .09375   | 2.381       | 7/16      | .4375    | 11.113      | 49/64     | .765625  | 19.447      |
| 7/64      | .109375  | 2.778       | 29/64     | .453125  | 11.509      | 25/32     | .78125   | 19.844      |
| 1/8       | .125     | 3.175       | 15/32     | .46875   | 11.906      | 51/64     | .796875  | 20.241      |
| 9/64      | .140625  | 3.572       | 31/64     | .484375  | 12.303      | 13/16     | .8125    | 20.638      |
| 5/32      | .15625   | 3.969       | 1/2       | .500     | 12.700      | 53/64     | .828125  | 21.034      |
| 11/64     | .171875  | 4.366       | 33/64     | .515625  | 13.097      | 27/32     | .84375   | 21.431      |
| 3/16      | .1875    | 4.763       | 17/32     | .53125   | 13.494      | 55/64     | .859375  | 21.828      |
| 13/64     | .203125  | 5.159       | 35/64     | .546875  | 13.891      | 7/8       | .875     | 22.225      |
| 7/32      | .21875   | 5.556       | 9/16      | .5625    | 14.288      | 57/64     | .890625  | 22.622      |
| 15/64     | .234375  | 5.953       | 37/64     | .578125  | 14.684      | 29/32     | .90625   | 23.019      |
| 1/4       | .250     | 6.350       | 19/32     | .59375   | 15.081      | 59/64     | .921875  | 23.416      |
| 17/64     | .265625  | 6.747       | 39/64     | .609375  | 15.478      | 15/16     | .9375    | 23.813      |
| 9/32      | .28125   | 7.144       | 5/8       | .625     | 15.875      | 61/64     | .953125  | 24.209      |
| 19/64     | .296875  | 7.541       | 41/64     | .640625  | 16.272      | 31/32     | .96875   | 24.606      |
| 5/16      | .3125    | 7.938       | 21/32     | .65625   | 16.669      | 63/64     | .984375  | 25.003      |
| L         |          | 1           |           |          |             | '  1      | 1.000    | 25.400      |

## Metric (SI) – U.S. Units for Fluid Power Use

(The following conversions are based on information taken from ASTM, American Society for Testing and Materials, Handbook E380-72.)

| Quantity    | Customary U.S. Unit              | SI Unit                                  | Conversion from U.S. to SI Units                                                             | Conversion from SI to U.S. Units                                                       |
|-------------|----------------------------------|------------------------------------------|----------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------|
| Area        | Square Inch (in <sup>2</sup> )   | Square Metre (m <sup>2</sup> )           | (in²) x (6.4516 x 10 -4 ) = (m²)                                                             | (m²) x 1550.003 = (in²)                                                                |
| Force       | Pound (lb,)                      | Newton (N)                               | (lbf) x 4.4482 = (N)                                                                         | (N) x (2.2481 x10 <sup>-1</sup> ) = (lb,)                                              |
| Frequency   | Cycles/Second (cps)              | Hertz (H <sub>2</sub> )                  | $1 (cps) = 1(H_z)$                                                                           | 1(Hz) = 1(cps)                                                                         |
| Length      | Inch (in)                        | Metre (m)                                | (in) x (2.540 x 10 <sup>-2</sup> ) = (m)                                                     | (m) x 39.370 = (in)                                                                    |
| Mass        | Pound (lb,,)                     | Kilogram (kg)                            | (lbm) x .4536 = (kg)                                                                         | $(kg) \times 2.2046 = (lb_m)$                                                          |
| Power       | Electric Horsepower (HP)         | Watt (W)                                 | (HP) x (7.460 x 10 <sup>2</sup> ) = (W)                                                      | (W) x (1.3405 x 10 <sup>-3</sup> ) = (HP)                                              |
|             | Pounds/Sq In (psi)               | Newtons/Sq Metre (N/m²)                  | (psi) x (6.8948 x 10³) = (N/m²)                                                              | (N/m²) x (1.4504 x 10 <sup>-4</sup> ) = (psi)                                          |
| Pressure    | (psi)<br>(psi)<br>(Bar)          | Mega Pascal (MPa)<br>Bar (Bar)<br>(N/m²) | (Non-Preferred Conversions)<br>(psi)/145 = MPa<br>psi/14.5 = Bar<br>(Bar) x 100,000 = (N/m²) | (MPa) x 145 = (psi)<br>(Bar) x (1.4504 x 10') = (psi)<br>(N/m²) x (1.00 x 10°) = (Bar) |
| Temperature | Degrees Fahrenheit (°F)          | Degrees Celsius (°C)                     | (°Celsius) = 0.556(°F-32)                                                                    | (1.8°C) + 32 = °F                                                                      |
| Torque      | Pound-Inch (lb <sub>r</sub> -in) | Newton-Metres (N-m)                      | (lb,-in) x (1.1298 x 10 <sup>-1</sup> ) = (N-m)                                              | (N-m) x 8.8507 = (lb <sub>t</sub> -in)                                                 |
|             | US Gallon (Gal)                  | Cubic Metre (m³)                         | (Gal) x (3.7854 x 10 <sup>.3</sup> ) = (m <sup>3</sup> )                                     | (m³) x (2.6417 x 10²) = (Gal)                                                          |
| Volume      |                                  | Litre (I)                                | (Non-Preferred Conversions)<br>(Gal) x 3.7854 = (I)                                          | (l) x (2.6417 x 10 <sup>-1</sup> ) = (Gal)                                             |
| Work        | Foot-Pound (ft-lb,)              | Joule (J)                                | (ft-lb <sub>i</sub> ) x 1.3558 = (J)                                                         | $(J) \times (7.3756 \times 10^{-1}) = (ft-lb_{,})$                                     |
|             |                                  |                                          |                                                                                              |                                                                                        |


## **Hose & Coupling Section**



## **Tightening and Torque Recommendations** for Hydraulic Couplings

The art of making a leak-proof connection with hydraulic couplings is to tighten the couplings properly at the time of installation. An over-tightened coupling may be just as apt to leak as an under-tightened coupling. This is because over-tightening a coupling may result in overstressing and/or cracking.

The torque values in the following tables give the minimum and maximum torque recommendations. The minimum value will create a leak-proof seal under most conditions. Applying torque values greater than the maximum recommendation will distort and/or crack the fitting. Values listed in SAE J514 are for qualification testing only and should not be used as the basis for setting up torque values for a production environment. These need to be established based on the coupling manufacturer's recommendations.

When tightening couplings, make sure that the hose does not twist on the adapter. Twisting will shorten hose life and scar the sealing surfaces of swivel type couplings (JIC, 45°, etc.), which can create leaks. For straight couplings, use a torque wrench on the hex swivel nut and a standard box wrench on the stem hex. Bent tube couplings can be restrained by holding onto the ferrule. When a crowsfoot wrench is used with a torque wrench, adjustments to the torque readings must be made otherwise over-tightening will occur. The distance E, as shown below, from the center of the drive socket to the center of the crowsfoot must be added to the torque value reading.

The following equation can be used to make these adjustments:



Actual Torque =  $(\underline{E+L}) \times (\text{Torque Wrench Reading})$ , where L

- L is in inches
- E is in inches
- Torque is in Ib.-in., Ib.-ft, or Newton-Meters

An example of using this equation is shown below:

Torque wrench reading = 45 lb.-ft. E = 1.5 inches L = 12 inches

Actual Torque =  $(1.5+12) \times (45) = 50.6$  lb.-ft 12

This example shows that the actual torque is approximately 10 percent higher than the reading indicates. All torque recommendations are based on dry threads. If oil or thread sealant is used, the maximum recommended torque values could be decreased by as much as 25 percent.

We do recommend lubricating all O-rings prior to insertion into flange head and ORS grooves. This will minimize the possibility of nicking the O-ring when it is installed. The torque values obtained from tightening pipe threads can vary considerably, depending on the conditions of the threads. Adequate sealing can occur at values much lower than the maximum values listed in the chart. However, the minimum torque values must be used to obtain adequate sealing.

## GLOBALSPIRAL COUPLINGS PCM/PCS FERRULES MEGACRIMP COUPLINGS POWER CRIMP COUPLINGS LOW PRESSURE COUPLINGS POLARSEAL COUPLINGS C14 COUPLINGS PCTS THFRMO-PLASTIC COUPLINGS FIELD

HOSE/CPLG. SELECTION

ATTACHABLE G1 & G2 COUPLINGS

FIELD ATTACHABLE C5 COUPLINGS

SURELOK AIR Brake

COUPLINGS

QUICK DISCONNECT COUPLERS

OUPLERS

NEW BALL VALVES

ACCESSORIES

Equipment And Parts



The World's Most Trusted Name in Belts, Hose and Hydraulics.

www.gates.com/hydraulics

**C72** 



The World's Most Trusted Name in Belts, Hose and Hydraulics.

## GATES HYDRAULICS

Your Local Distributor:

35093

0

October 2009 Supercedes 2007 Edition

Gates Corporation 1551 Wewatta Street | P.O. Box 5887 | Denver, CO 80217-5887 (800) 366-3128 | Fax (303) 744-4499 www.gates.com/hydraulics